Environmental understanding: adapting to a changing climate
From food security to mitigating geohazard risks, environmental understanding is essential for mitigation and resilience in a changing climate.
16/03/2021
In 2020 the UK Prime Minister announced a plan for a ‘green industrial revolution’. Set out in a Ten Point Plan and a new Energy White Paper, the Government aims to deliver sustainable growth and a net-zero carbon emission economy by 2050.
The challenges and opportunities presented by this ambition are considerable. They will impact on all sectors of our economy, and on the lives and livelihoods of all UK citizens.
At the British Geological Survey, we have a vital role to play, from informing the location of offshore wind farms, to understanding the hazards associated with a changing climate, such as droughts and floods, and the security of water resources for all.
Offshore renewable energy
The British Government is aiming to have one third of the UK’s power provided through renewable energy sources by 2030, with offshore windfarms making a significant contribution to this transition.
It isn’t widely known that during the last ice age the seas surrounding the British Isles were inundated by major ice sheets. As they melted, they left behind a complex array of sediments buried beneath the seabed which now form the foundations for these turbines.
To support the long-term sustainable development of these large, offshore projects, it is essential that we understand the complex landforms left by the ice sheets and the meltwater fed rivers, and how sea-level rise at the end of the ice age influences coastal change.
At BGS, we are integrating a range of geological datasets to develop process-based, landscape evolution “models” to understand the lasting changes these past environments have made on the sediments beneath the seabed. Using this research, we are providing the offshore renewables industry with the detailed geological information they need to design and locate windfarms in a sustainable way.
Shallow geohazard understanding for sustainable development
To achieve a world-class infrastructure that is sustainable requires an understanding of the susceptibility of shallow geological hazards (geohazards) to climate change. These hazards are capable of causing harm to both life and the built environment through their impact on land stability. They include landslides, sinkholes, piping, scour and collapsible soil, which commonly respond to changes in groundwater conditions.
Soil property related hazards such as compressibility, clay shrink-swell and the impacts of human use of the sub-surface, e.g. mining, must also be understood, along with hydrohazards, such as flooding. The distribution of these geohazards corresponds closely with the underlying geology and each are sensitive to climatic conditions due to the role of groundwater or soil moisture in their activation. Modelling these geohazards is incredibly complex, and is made more difficult by extremes of climate.
BGS hosts geohazard databases and datasets that provide valuable information with respect to the distribution of the soils and ground conditions that potentially give rise to these events. Climate modelling enables scientists to assess the extent of any increased spatial and depth footprint of these hazards and to assist strategic planners to avoid them, which is the most efficient way to ensure sustainable development.
Where it is necessary for infrastructure to pass across ground that is susceptible to shallow geohazards, geophysical property data can be used to inform mitigation measures. Typically, this may require engineers to increase foundation depths; introduce additional reinforcement, or increase drainage, or slope reduction to maintain slope stability.
The urban environment
Urban areas in the UK only cover about eight per cent of the land but are home to approximately 80 per cent of our population. This places significant pressure on space and natural resources. The question we must ask ourselves is whether the city of today provides a useful benchmark to respond to these pressures and meet our commitments to climate action and the sustainable development goals. In truth we will have to design our cities differently such that we are living more in harmony with the natural environment, including how cities utilise the subsurface.
Through the development of 3D urban geology models we are helping to identify how the ground can be used to make our urban areas more resilient and sustainable. This includes:
- research on the implementation of sustainable drainage systems to help increase urban greening and manage surface water flooding
- evaluating the potential of the ground for underground development so that the land surface in cities can be preserved to support the design of garden cities
- assessment of the influence of geology on heat loss from buildings
The Anthropocene
The Anthropocene is used to describe the most recent period in Earth’s history when human activity started to have a significant impact on the Planet’s climate and ecosystems. When humans become extinct we will undoubtedly leave a trace in the geological record, including boreholes, tunnels and caverns, waste and resource storage facilities, mineral workings, military test traces and plastic.

BGS has calculated the mass of anthropogenic deposits in Greater London to be around 6 billion tonnes. Source: Alexander London / Unsplash
At BGS we are working on ways of measuring human impact with the aim of providing mitigation strategies. For example, we calculated the weight of London to help understand the loading that causes local compaction and regional subsidence (a major concern during a time of rising global sea level).
By looking at the geological deposits (non-anthropogenic deposits) and overlying buildings (anthropocene deposits), we calculated the mass of anthropogenic deposits in Greater London to be around six billion tonnes. In another study we showed that mineral extraction for human use causes around 316 Gigatons (316 000 000 000 tons) of sediment and dust to be moved around the world, a figure more than 24 times greater than the sediment supplied annually by the world’s major rivers to the oceans.
As nations progress along a developmental continuum so their waste chemical signatures rise and fall. BGS have been comparing human impact in sediment cores from London, Kenya and Vietnam by measuring diagnostic organic compounds from coal and wood burning, vehicle exhaust, sewage, pharmaceuticals, electronics, deforestation and microplastics. These profiles are compared to toxicity bioassays and soil/sediment guidelines in order to mitigate ecologically adverse effects of a changing cocktail of chemical inputs.
Secure water for developing countries
For much of the world, climate change is manifested as a water crisis. Changes in the climate are leading to shifts in rainfall patterns and evaporation – increasing the demand for secure water for drinking, industry and irrigation. Floods and droughts are also becoming more common and severe.

A communal hand pump in Ethiopia. Source: ©UNICEF Ethiopia/2016/Zerihun Sewunet
For many countries, solutions will focus on developing more resilient water resources and infrastructure, and better flood protection and forecasting, increasingly using nature-based solutions. In poorer parts of the world where large scale water storage and reticulation is difficult, BGS research has been showing that further development and protection of groundwater resources holds the key to adaptation. For example, during recent severe droughts in east Africa, communities that had access to reliable groundwater supplies were more resilient, spending less time collecting water and having more secure livelihoods.
The geology beneath our feet has a crucial element in meeting our sustainable futures. From urban infrastructure and food security to siting windfarms and mitigating risks associated with geohazards, environmental understanding is essential for mitigation and resilience in a changing climate.

Prof Melanie Leng
BGS Chief Scientist, environmental change, adaptation and resilience
Relative topics
Related news

World Water Day 2023: groundwater photo stories
22/03/2023
A showcase of groundwater use from around the world highlighting how developing groundwater has benefited the lives of many people.

New seabed geology maps for offshore Yorkshire
14/03/2023
Offshore Yorkshire is the latest map to be released in BGS’s series of fine-scale digital seabed maps.

New BGS karst report released for Hampshire and Wiltshire
10/03/2023
The report details the evidence for karst processes in areas of soluble rocks that have not previously been considered karstic.

Dr Corinna Abesser appointed BGS Policy Director
08/03/2023
Dr Abesser will be supporting BGS staff in the translation of their science outputs to inform policy and regulation as well as advising senior management on policy-related issues.

Melinda Lewis awarded prestigious Whitaker Medal for outstanding contribution to hydrogeology
01/03/2023
Melinda Lewis, BGS Honorary Research Associate, has been awarded the Geological Society Whitaker Medal, recognising outstanding long-term contributions to hydrogeology.

BGS welcomes two new board appointments for 2023
22/02/2023
Prof Carol Frost, professor emerita of the faculty of geology and geophysics at the University of Wyoming, and Dr Jenny Pyper, former CEO of the Utility Regulator for Northern Ireland and interim head of the Northern Ireland Civil Service, will take up their positions on the BGS Board from 1 March 2023.

Six BGS datasets for assessing shrink–swell subsidence hazards
17/02/2023
Shrink–swell subsidence is one of the most significant geological hazards affecting the UK. BGS has six datasets to help assess the problem.

The Kahraman Maraş earthquake sequence, Turkey/Syria
14/02/2023
Two large earthquakes occurred within hours of each other on 6 February 2023.

One year on: reflections on the Hunga Tonga-Hunga Ha’apai volcanic eruption
18/01/2023
The eruption of the Hunga Tonga-Hunga Ha’apai Volcano in January 2022 has highlighted a global unpreparedness for the impacts from large-scale global events.

New geological map of the Maltese Islands published
19/12/2022
The new map, commissioned by Malta’s Continental Shelf Department, is the first update for almost 30 years.

Work complete on 1000 solar panels at BGS
07/12/2022
More than 1000 energy-saving solar panels have been installed at BGS’s headquarters in Keyworth, Nottinghamshire.

Updated radon map for Great Britain published
02/12/2022
The UK Health Security Agency and BGS have published an updated radon potential map for Great Britain.