What causes the Earth's climate to change?

Discovering Geology – climate change

In this section:

Geological records show that there have been a number of large variations in Earth’s climate. These have been caused by many natural factors, including changes in the sun, emissions from volcanoes, variations in Earth’s orbit and levels of carbon dioxide.

Global climate change has typically occurred very slowly over thousands or millions of years. However, research shows that the current climate is changing more rapidly than shown in geological records.

Skaftafellsjökull Glacier, Iceland
Information icon

During the last ice age, the British Isles had many glaciers like the example above, located in present-day Iceland. BGS © UKRI

Expand icon

Causes of climate change

Almost all of the energy that affects the climate on Earth originates from the Sun. The Sun’s energy passes through space until it hits the Earth’s atmosphere. Not all of this energy passes through to reach the Earth’s surface. The rest of the energy is reflected back into space or absorbed by the atmosphere. The energy output of the Sun is not constant, it varies over time and this has an impact on our climate. 

Only some of the solar energy intercepted at the top of the atmosphere passes through to the Earth’s surface. 

The three changes in the Earth’s orbit around the Sun —eccentricity, axial tilt, and precession — are collectively called Milankovitch cycles. According to Milankovitch’s theory, these three cycles combine to affect the amount of solar heat that reaches the Earth’s surface and subsequently influences climatic patterns, including periods of glaciation (ice ages). The period between these changes happen over 10s of 1000s of years (precession and axial tilt) to more than 100s of 1000s of years (eccentricity). 

Milankovitch cycle
Earth’s orbit. BGS © UKRI

The Earth’s orbit

The Earth’s orbit around the Sun is an ellipse, but it does change shape. Sometimes, it is almost circular and the Earth stays approximately the same distance from the Sun throughout its orbit. At other times, the ellipse is more pronounced so that the Earth moves closer and further away from the Sun as it orbits. When the Earth is closer to the Sun our climate is warmer and this cycle also affects the length of the seasons. The measure of a shape’s deviation from being a circle, in this case the Earth’s orbit, is called its eccentricity. 

Circular orbit (left) and elliptical orbit (right). Elliptical orbit – when the Earth is closer to the Sun, its climate is warmer.
Circular orbit (left) and elliptical orbit (right). Elliptical orbit – when the Earth is closer to the Sun, its climate is warmer. BGS © UKRI

The Earth’s axial tilt

The tilt in the axis of the Earth is called its obliquity. This angle changes with time, and over about 41 000 years it moves from 22.1 degrees to 24.5 degrees and back again. When the angle increases the summers become warmer and the winters become colder. 

Obliquity. BGS © UKRI

The Earth’s precession

The Earth wobbles on its axis, much like a spinning top that is slowing down. This ‘precession’ action is caused by the gravitational pull of the Moon and the Sun upon the Earth. This means that the North Pole changes where it points to in the sky. Currently the Earth’s axis points at Polaris, the North Star, but over thousands of years the axis moves around in a precession circle and points at different parts of the sky. It impacts on the seasonal contrasts between hemispheres and the timing of the seasons. 

Precession. BGS © UKRI

Greenhouse gases include carbon dioxide (CO2), methane and water vapour. Water vapour is the most abundant greenhouse gas in the atmosphere, but it stays in the atmosphere for a much shorter period of time, just a few days. Methane stays in the atmosphere for about 9 years until it is removed by oxidation into CO2 and water. Carbon dioxide stays in the atmosphere much longer, from years to centuries, contributing to longer periods of warming. These gases trap solar radiation in the Earth’s atmosphere, making the climate warmer.

Changes in ocean currents

Ocean currents carry heat around the Earth. As the oceans absorb more heat from the atmosphere, sea surface temperature increases and the ocean circulation patterns that transport warm and cold water around the globe change. The direction of these currents can shift so that different areas become warmer or cooler. As oceans store a large amount of heat, even small changes in ocean currents can have a large effect on global climate. In particular, increases in sea surface temperature can increase the amount of atmospheric water vapour over the oceans, increasing the quantity of greenhouse gas. If the oceans are warmer they can’t absorb as much carbon dioxide from the atmosphere.

Ocean currents during the cretaceous
Ocean currents during the cretaceous. BGS © UKRI
Ocean currents present day
Ocean currents present day. BGS © UKRI

Above: Global ocean currents. Oceans store a large amount of heat, so that small changes in ocean currents can have a large effect on coastal and global climate.


Carbon dioxide content of the oceans

The oceans contain more CO2 in total than the atmosphere and exchanges in CO2 occur between the oceans and the atmosphere. CO2 absorbed in ocean water does not trap heat as it does in the atmosphere. The world’s oceans absorb about a quarter of the CO2we release into the atmosphere every year. As atmospheric CO2levels increase so do the ocean’s CO2levels. 

Over very long periods, plate tectonic processes cause continents to move to different positions on the Earth. For example, Britain was near to the equator during the Carboniferous period, around 300 million years ago, and the climate was warmer than it is today. The movement of the plates also causes volcanoes and mountains to form and these too can contribute to a change in climate.  Large mountain chains can influence the circulation of air around the globe, and consequently influence the climate. For example, warm air may be deflected to cooler regions by mountains.

Volcanoes affect the climate through the gases and particles (tephra/ash) thrown into the atmosphere during eruptions. The effect of the volcanic gases and dust may warm or cool the Earth’s surface, depending on how sunlight interacts with the volcanic material. During major explosive volcanic eruptions, large amounts of volcanic gas, aerosol droplets and ash are released. Ash falls rapidly, over periods of days and weeks, and has little long-term impact on climate change. However, volcanic gases that are ejected into the stratosphere stay there for much longer periods. Volcanic gases such as sulphur dioxide can cause global cooling, but carbon dioxide has the potential to cause global warming.

In the present day, the contribution of volcanic emissions of CO2 into the atmosphere is very small; equivalent to about 1% of man-made emissions.

On a global scale, patterns of vegetation and climate are closely correlated. Vegetation absorbs CO2 and this can buffer some of the effects of global warming. On the other hand, desertification amplifies global warming through the release of CO2 linked with the decrease in vegetation cover. This decrease in vegetation cover, via deforestation for example, tends to increase local albedo, leading to surface cooling. Albedo refers to how much light a surface reflects rather than absorbs.

Generally, dark surfaces have a low albedo and light surfaces have a high albedo. Ice with snow has a high albedo and reflects around 90 per cent of incoming solar radiation. Land covered with dark-coloured vegetation is likely to have a low albedo and will absorb most of the radiation.

Nowadays, most of what is on the Earth stays on the Earth; very little material is added by meteorites and cosmic dust. However, meteorite impacts have contributed to climate change in the geological past; a good example is the Chicxulub crater, Yucatán Peninsula in Mexico.

Large impacts, such as Chicxulub, can cause a range of effects that include dust and aerosols being ejected high into the atmosphere that prevent sunlight from reaching the Earth. These materials insulate the Earth from solar radiation and cause global temperatures to fall; the effects can last for a few years. After the dust and aerosols fall back to Earth, the greenhouse gases (carbon dioxide, water and methane), caused by the interaction of the impactor and its ‘target rocks’, remain in the atmosphere and can cause global temperatures to increase; the effects can last decades. 


Each of the above factors contribute to changes in the Earth’s climate, however the way they interact with each other makes it more complicated. A change in any one of these can lead to additional and enhanced or reduced changes in the others. For example, we understand that the oceans can take carbon dioxide out of the atmosphere: 

When the quantity of CO2 in the atmosphere increases, the temperature of the Earth rises. This in turn would contribute to a warming of the oceans. Warm oceans are less able to absorb CO2 than cold ones, so as the temperature rises, the oceans release more CO2 into the atmosphere, which in turn causes the temperature to rise again. This process is called feedback. A positive feedback accelerates a temperature rise, whereas a negative feedback slows it down.

You may also be interested in:

The greenhouse effect: some of the infrared radiation passes through the atmosphere, but most is absorbed and re-emitted in all directions by greenhouse gas molecules and clouds. The effect of this is to warm the Earth's surface and the lower atmosphere.

The greenhouse effect

Burning fossil fuels puts more carbon dioxide into our atmosphere, which acts as an insulating blanket around the Earth, trapping more of the Sun’s heat.

Show more
Thawing permafrost in Herschel Island, 2013. Source: Boris Radosavljevic.

The carbon story

The carbon cycle describes the process in which carbon atoms continually travel from the atmosphere to the Earth, where they get stored in rocks, oceans and organisms, and then released back into the atmosphere.

Show more
Sandstone coloured red with iron oxides, indicating a hot climate at the time of deposition.

Impacts of climate change

Temperature rises can affect agriculture, sea levels and the frequency of extreme weather incidents. We can study past climate change by looking at the evidence in rocks, fossils and changes in the landscape.

Show more

Understanding carbon capture and storage

Carbon capture and storage involves capturing carbon dioxide at emission sources, such as power stations, then transporting and storing it underground.

Show more



Was this page helpful?

  • How can we make this section better?*

  • Please select a reason*

  • How can we make this section better?*