Mining hazard data (not including coal) from BGS
Great Britain has over 250 000 documented mining sites and the underground voids resulting from past mining activity pose a possible hazard. Knowledge of the distribution of former mining areas will help us to plan for future development and ongoing maintenance.
17/05/2022 By BGS Press
Mine workings range from small-scale, local workings, such as graphite mining in the Lake District or jet mined in Whitby, to large-scale, national resources such as salt extraction in Cheshire. While modern mine workings meet stringent safety standards, many old, disused or abandoned sites are gradually decaying, leaving a long-forgotten legacy that poses potential problems to infrastructure and property. It is therefore essential we have knowledge of the distribution of former mining areas, helping us to plan for future development and ongoing maintenance.
What is a mining hazard?
The voids resulting from past underground mining activity pose a possible hazard. Former underground workings, particularly where shallow, may collapse and cause surface settlement.
Mining hazards in Great Britain can take on various different forms, including surface impacts like ground instability, gradual subsidence, cover collapse and groundwater contamination. As our climate changes, new climate conditions may exacerbate ground conditions further, leading to more incidents of this nature.
Armed with knowledge about potential hazards, preventative steps can be put in place to alleviate the impact of the hazard on people and property. The cost of such prevention may be very low and is often many times lower than the repair bill following ground movement.
Mining hazard examples
- An old mining substructure at Burrow Lead Mine in Derbyshire decayed, leading to a tunnel collapse and propagation to the surface. In turn, this caused roadside subsidence in 2011, which disrupted infrastructure
- Ferniehill in Edinburgh has seen issues where movement in old limestone workings has caused property damage
- Former chalk workings opened up, causing potential risk to life, at Gillingham in Kent (2014) and St Albans, Hertfordshire (2018)
- Ten million gallons of contaminated water flowed out of old mine workings at Wheal Jane tin mine, Cornwall, in 1992. The workings became flooded and the groundwater contaminated with heavy metal pollution; when an underground structure failed, a sudden outrush occurred

Denehole at Rainham Mark Grammar School, Gillingham, Kent (2014). Deneholes are medieval chalk extraction pits; characteristically they comprise a narrow shaft with a number of chambers radiating from the base. The depth of the features reflects the depth to the underlying chalk bedrock. The shaft width was commonly in the order of 2–3 m, widening out into galleries at depth. BGS © UKRI.
New research incorporated into our mining hazard data product
Currently. approximately two per cent of the land area of Great Britain is identified as having high susceptibility to mining hazard. The BGS Mining Hazard (not including coal) data product identifies areas affected by non-coal mining, providing a general assessment of hazard potential, thereby indicating areas at risk of possible subsidence associated with voids resulting from mine workings.
The newly released version of the BGS Mining Hazard data product also introduces a series of derived ‘zones of influence’ (ZOI) for evaporites (e.g. salt; gypsum; anhydrite), oil shales and building stone (e.g. limestone; sandstone; slate).
(Mining of coal is specifically excluded from this dataset. Enquiries on past coal mining should be directed to the Coal Authority.)
What is a zone of influence?
Zones of influence are areas indicating the potential surface extent that may be affected by underground workings. Calculations evaluate a number of criteria, including:
- seam thickness
- depth and dip of seam
- competence of roof and floor
- age of working
By integrating ZOIs into the product, a clearer picture of the surface area of legacy mining on property, people and pursuits can be established.
- Learn more about our mining hazard (not including coal) data
Case study: Long Meg Mine, Cumbria
- Worked for gypsum and anhydrite; approximately five million tonnes were extracted
- Mining was from horizontal adits and drifts driven from the side of the Eden Valley
- The mining method was pillar-and-stall, once underground
Try our open data option for free
BGS offers a generalised 1 km ‘hexgrid’ version of the data in ESRI shapefile format under the Open Government Licence to enable users to get a feel for our mining hazard (not including coal) data.

Mining hazard hexgrid example. BGS © UKRI.
Further information
For further information please contact digitaldata@bgs.ac.uk.
Relative topics
Related news

World Water Day 2023: groundwater photo stories
22/03/2023
A showcase of groundwater use from around the world highlighting how developing groundwater has benefited the lives of many people.

New seabed geology maps for offshore Yorkshire
14/03/2023
Offshore Yorkshire is the latest map to be released in BGS’s series of fine-scale digital seabed maps.

New BGS karst report released for Hampshire and Wiltshire
10/03/2023
The report details the evidence for karst processes in areas of soluble rocks that have not previously been considered karstic.

Dr Corinna Abesser appointed BGS Policy Director
08/03/2023
Dr Abesser will be supporting BGS staff in the translation of their science outputs to inform policy and regulation as well as advising senior management on policy-related issues.

Melinda Lewis awarded prestigious Whitaker Medal for outstanding contribution to hydrogeology
01/03/2023
Melinda Lewis, BGS Honorary Research Associate, has been awarded the Geological Society Whitaker Medal, recognising outstanding long-term contributions to hydrogeology.

BGS welcomes two new board appointments for 2023
22/02/2023
Prof Carol Frost, professor emerita of the faculty of geology and geophysics at the University of Wyoming, and Dr Jenny Pyper, former CEO of the Utility Regulator for Northern Ireland and interim head of the Northern Ireland Civil Service, will take up their positions on the BGS Board from 1 March 2023.

Six BGS datasets for assessing shrink–swell subsidence hazards
17/02/2023
Shrink–swell subsidence is one of the most significant geological hazards affecting the UK. BGS has six datasets to help assess the problem.

The Kahraman Maraş earthquake sequence, Turkey/Syria
14/02/2023
Two large earthquakes occurred within hours of each other on 6 February 2023.

One year on: reflections on the Hunga Tonga-Hunga Ha’apai volcanic eruption
18/01/2023
The eruption of the Hunga Tonga-Hunga Ha’apai Volcano in January 2022 has highlighted a global unpreparedness for the impacts from large-scale global events.

New geological map of the Maltese Islands published
19/12/2022
The new map, commissioned by Malta’s Continental Shelf Department, is the first update for almost 30 years.

Work complete on 1000 solar panels at BGS
07/12/2022
More than 1000 energy-saving solar panels have been installed at BGS’s headquarters in Keyworth, Nottinghamshire.

Updated radon map for Great Britain published
02/12/2022
The UK Health Security Agency and BGS have published an updated radon potential map for Great Britain.