Six ways to prepare your home for climate change related subsidence
Subsidence caused by shrinking and swelling of the ground can lead to financial loss. How can you mitigate against it?
19/05/2021
Shrinking and swelling of the ground, often reported as subsidence, is already one of the most damaging geohazards in Britain, costing the economy an estimated £3 billion over the past decade. Subsidence may lead to financial loss for anyone involved in the ownership or management of property, including developers, homeowners or local government. These costs could include increased insurance premiums, depressed house prices and in some cases, engineering works to stabilise land or property.
How does climate change affect shrink–swell?
Many soils contain clay minerals that absorb water when wet (making them swell) and lose water as they dry (making them shrink). Dry weather and high temperatures have been found to be a major factor in the emergence of subsidence in clay soils. However, every summer can be completely different to the last; summer 2018 had the hottest, driest June for years whereas summer 2019 had one of the wettest Junes on record. Looking to the future, warmer, drier summers and increases in annual temperature and rainfall variability are suggested for the UK. What is considered a heat wave today may be the norm in the 2050s and cool in the 2080s!
What does the data show?
The rock formations most susceptible to shrink–swell behaviour are found mainly in the south-east of Britain. Here, many of the clay formations are too young to have been changed into stronger mudrocks, leaving them still able to absorb and lose moisture. Superficial deposits, such as alluvium, peat and laminated clays, can also be susceptible to soil subsidence and heave (e.g. in the Vale of York and the Cheshire Basin).
Clay rocks elsewhere in the country are older, hardened by burial deep in the Earth and less able to absorb water. In some areas (e.g. around The Wash and under the Lancashire Plain) they are deeply buried beneath other soils that are not susceptible to shrink–swell behaviour.
By combining the BGS GeoSure dataset and applying the UK Climate Projections (UKCP) scenarios for rainfall and temperature changes in the UK for the next century, maps have been produced for Great Britain showing areas with varying vulnerability to shrink–swell and thus subsidence in the future due to climate change. The maps show that areas with clay soils that shrink and swell with changes in moisture are going to become increasingly susceptible in the coming century and beyond.
The BGS GeoClimate UKCP18 datasets show an obvious increase in the amount of shrink–swell potential across the south-east of England, due to climate change. Of particular interest are the clay-rich formations that are currently of low-moderate susceptibility. Buildings on these rock types might not have the robust foundations suitable to withstand subsidence hazard.
How might this affect my home?
As reported by the Association of British Insurers (2018), the effects of subsidence in a property can usually be seen as cracks in walls that:
- are more than 3 mm thick
- run diagonally across the wall
- are wider from top to bottom
- are visible from inside and outside
- occur near doors and windows
- cause rippling in wallpaper
What can I do about it?
If you are in an area that shows an increased susceptibility under future climate conditions, you should get specialist advice from a suitably qualified expert such as a structural surveyor, geotechnical engineer or chartered engineering geologist.
If active clay shrinkage or swelling is not affecting your property but the area has shrink–swell clay potential, this should be taken into account before planning new buildings, extensions or modifications, or any other changes in land use.
- Take specialist advice before starting major building work.
- Consider the effect of laying impermeable drives, paths or hardstanding on the rainfall reaching the soil below and changing its moisture content.
- Seek expert advice before planting trees near to a house. The safe planting distance will depend on the tree species, the type of foundation and soil composition.
- Ensure foundations of new constructions or extensions are designed for any shrinkable clay soil conditions that could be present or forecast under future climate conditions.
- Do not plant potentially large trees next to a house.
- Do not remove mature trees that pre-date the construction of the house before taking advice. Tree management by crown reduction or thinning may be better than removal because it will maintain a stable soil moisture profile.
About the author

Kathryn Lee
Geologist and BGS Hazard and Resilience Modelling team leader
Relative topics
Latest blogs

Island groundwater management in the Philippines: part two — Bacolod
23/05/2023
In the second part of their Philippines update, BGS’s Andy Barkwith and Andy McKenzie meet up with other BGS staff members to continue their outreach work.

Collaboration, progress and emerging themes in mine-water heating, cooling and storage
17/05/2023
BGS, the Coal Authority and IEA Geothermal held the third Mine Water Energy Symposium to enhance collaboration and knowledge exchange around the world.

The Stone of Destiny
03/05/2023
The origins of the Stone of Scone: where it came from, why BGS has crumbs of it in its collections and the little-known fact that it is upside down.

Island groundwater management in the Philippines: part one — Boracay
19/04/2023
BGS’s Andy Barkwith and Andy McKenzie travelled to the Philippines to undertake collaborative research and outreach with Filipino partners for a national hydrological modelling project. In this first blog, they discuss the first week of work on small islands.

Six ‘eggs’-tremely tenuous links between geology and Easter
06/04/2023
Think that geology and Easter don’t have anything in common? You might be surprised, as this blog by BGS’s Kirstin Lemon highlights.

Exploring animal diets in Shakespeare’s London
31/03/2023
The ‘Box office bears’ project aims to understand more about the bears that were once a common sight in England. Prof Hannah O’Regan and Dr Lizzie Wright from the University of Nottingham explain what the project entails.

Hemsby coastal erosion: the scale of the transformational challenge around the coastlines of England and Wales
24/03/2023
The recent closure of Hemsby beach in Norfolk provides key information on the transformational challenge of coasts around England and evidence of historical change along the coastlines of England and Wales.

Six ways we’re improving recycling at BGS Keyworth
24/03/2023
Sustainability at the BGS site in Keyworth, Nottingham, is being improved by recycling, managing our waste, making our labs more efficient and more…

A tale of two groundwaters
21/03/2023
Why the United Nations 2023 Water Conference needs to know more about groundwater.

Below the bonnie banks: mapping Loch Lomond’s underwater landslides
07/03/2023
Using high-resolution, multibeam bathymetry and shallow seismic imaging, BGS’s marine geoscience and landslides teams are mapping historic landslides under the waters of Loch Lomond.

When did the cows come home?
23/02/2023
PhD student David Osborne is exploring Bronze Age animal husbandry using isotopes and X-rays.
Property subsidence assessment: helping to mitigate shrink–swell hazard risk
25/01/2023
The BGS Property Subsidence Assessment dataset provides insurers and homeowners with tools to better understand shrink–swell and the risk it poses to homes and businesses.
You may also be interested in

BGS GeoSure
The BGS GeoSure datasets identify areas of potential hazard and, therefore, potential natural ground movement, in Great Britain.

GeoClimate UKCP09 and UKCP18
BGS has developed a suite of products, including maps and data, which show potential change in subsidence due to UKCP climate change scenarios

Swelling and shrinking soils
Shrink–swell, or expansive, soils are one of the most costly and widespread geological hazards globally, with costs estimated to run into several billion pounds annually.