Mining hazard data (not including coal) from BGS
Great Britain has over 250 000 documented mining sites and the underground voids resulting from past mining activity pose a possible hazard. Knowledge of the distribution of former mining areas will help us to plan for future development and ongoing maintenance.
17/05/2022 By BGS Press
Mine workings range from small-scale, local workings, such as graphite mining in the Lake District or jet mined in Whitby, to large-scale, national resources such as salt extraction in Cheshire. While modern mine workings meet stringent safety standards, many old, disused or abandoned sites are gradually decaying, leaving a long-forgotten legacy that poses potential problems to infrastructure and property. It is therefore essential we have knowledge of the distribution of former mining areas, helping us to plan for future development and ongoing maintenance.
What is a mining hazard?
The voids resulting from past underground mining activity pose a possible hazard. Former underground workings, particularly where shallow, may collapse and cause surface settlement.
Mining hazards in Great Britain can take on various different forms, including surface impacts like ground instability, gradual subsidence, cover collapse and groundwater contamination. As our climate changes, new climate conditions may exacerbate ground conditions further, leading to more incidents of this nature.
Armed with knowledge about potential hazards, preventative steps can be put in place to alleviate the impact of the hazard on people and property. The cost of such prevention may be very low and is often many times lower than the repair bill following ground movement.
Mining hazard examples
- An old mining substructure at Burrow Lead Mine in Derbyshire decayed, leading to a tunnel collapse and propagation to the surface. In turn, this caused roadside subsidence in 2011, which disrupted infrastructure
- Ferniehill in Edinburgh has seen issues where movement in old limestone workings has caused property damage
- Former chalk workings opened up, causing potential risk to life, at Gillingham in Kent (2014) and St Albans, Hertfordshire (2018)
- Ten million gallons of contaminated water flowed out of old mine workings at Wheal Jane tin mine, Cornwall, in 1992. The workings became flooded and the groundwater contaminated with heavy metal pollution; when an underground structure failed, a sudden outrush occurred

Denehole at Rainham Mark Grammar School, Gillingham, Kent (2014). Deneholes are medieval chalk extraction pits; characteristically they comprise a narrow shaft with a number of chambers radiating from the base. The depth of the features reflects the depth to the underlying chalk bedrock. The shaft width was commonly in the order of 2–3 m, widening out into galleries at depth. BGS © UKRI.
New research incorporated into our mining hazard data product
Currently. approximately two per cent of the land area of Great Britain is identified as having high susceptibility to mining hazard. The BGS Mining Hazard (not including coal) data product identifies areas affected by non-coal mining, providing a general assessment of hazard potential, thereby indicating areas at risk of possible subsidence associated with voids resulting from mine workings.
The newly released version of the BGS Mining Hazard data product also introduces a series of derived ‘zones of influence’ (ZOI) for evaporites (e.g. salt; gypsum; anhydrite), oil shales and building stone (e.g. limestone; sandstone; slate).
(Mining of coal is specifically excluded from this dataset. Enquiries on past coal mining should be directed to the Coal Authority.)
What is a zone of influence?
Zones of influence are areas indicating the potential surface extent that may be affected by underground workings. Calculations evaluate a number of criteria, including:
- seam thickness
- depth and dip of seam
- competence of roof and floor
- age of working
By integrating ZOIs into the product, a clearer picture of the surface area of legacy mining on property, people and pursuits can be established.
- Learn more about our mining hazard (not including coal) data
Case study: Long Meg Mine, Cumbria
- Worked for gypsum and anhydrite; approximately five million tonnes were extracted
- Mining was from horizontal adits and drifts driven from the side of the Eden Valley
- The mining method was pillar-and-stall, once underground
Try our open data option for free
BGS offers a generalised 1 km ‘hexgrid’ version of the data in ESRI shapefile format under the Open Government Licence to enable users to get a feel for our mining hazard (not including coal) data.

Mining hazard hexgrid example. BGS © UKRI.
Further information
For further information please contact digitaldata@bgs.ac.uk.
Relative topics
Related news
Map of BGS BritPits showing the distribution of worked mineral commodities across the country
18/02/2026
BGS’s data scientists have generated a summary map of the most commonly extracted mineral commodities by local authority area, demonstrating the diverse nature of British mineral resources.
Funding awarded to map the stocks and flows of technology metals in everyday electronic devices
12/02/2026
A new BGS project has been awarded Circular Electricals funding from Material Focus to investigate the use of technology metals in everyday electrical items.
New UK/Chile partnership prioritises sustainable practices around critical raw materials
09/02/2026
BGS and Chile’s Servicio Nacional de Geología y Minería have signed a bilateral scientific partnership to support research into critical raw materials and sustainable practices.
Extensive freshened water confirmed beneath the ocean floor off the coast of New England for the first time
09/02/2026
BGS is part of the international team that has discovered the first detailed evidence of long-suspected, hidden, freshwater aquifers.
Funding secured to help mitigate ground risk in UK construction sector
05/02/2026
The BGS Common Ground project has been awarded new funding to help unlock the value of ground investigation data.
Can sandstones under the North Sea unlock the UK’s carbon storage potential?
02/02/2026
For the UK to reach its ambitious target of storing 170 million tonnes of carbon dioxide per year by 2050, it will need to look beyond the current well-studied geographical areas.
Quaternary UK offshore data digitised for the first time
21/01/2026
The offshore wind industry will be boosted by the digitisation of a dataset showing the Quaternary geology at the seabed and the UK’s shallow subsurface.
Suite of ten new soil reference materials released
02/01/2026
BGS has a longstanding track record of producing high-quality reference materials and has released ten new soil reference materials.
Perth and Kinross tops the UK’s earthquake activity charts for 2025
29/12/2025
Seismologists at BGS have published data on the number of seismic events over the past 12 months with over 300 earthquakes recorded.
BGS awarded funding to support Malaysia’s climate resilience plan
17/12/2025
The project, funded by the Foreign, Commonwealth & Development Office, will focus on minimising economic and social impacts from rainfall-induced landslides.
New geological maps of the Yorkshire Wolds to better inform groundwater management and policy decisions
17/12/2025
The new mapping provides crucial data on localised geological issues that may assist in protecting water supplies.
‘Three norths’ set to leave England and not return for hundreds of years
12/12/2025
The historic alignment of true, magnetic, and grid north is set to leave England, three years after they combined in the country for the first time since records began.



