Natural flood management: is geology more important than trees?
Looking at innovative ways of creating resilience to flooding hazards with natural flood management.
23/11/2023

View of the Eddleston Natural Flood Management demonstration and research site in the Scottish Borders. This is one of a global network of UNESCO Ecohydrology Demonstration Sites. © Leo Peskett / Heriot Watt
Natural flood management (NFM) has become a key aspect of UK policy to reduce the risk of flooding, a hazard that is expected to increase under future climate-change scenarios.
What is natural flood management?
NFM seeks to control flooding by reducing or slowing the flow in river catchments using natural approaches. These include measures such as:
- planting trees to enhance infiltration and catchment roughness
- installing leaky wooden barriers within streams to create temporary surface water storage
- re-meandering rivers to reconnect them to their flood plains
Current understanding of natural flood management
There is growing pressure to change the way landscapes are managed at large spatial scales to respond to the climate and biodiversity crises. Despite its newfound popularity in UK policy, there are still uncertainties about the effectiveness of NFM at large spatial scales and for large floods. This is particularly true for measures that are dispersed across catchments, such as land-use change through afforestation or improvements to soil quality. Understanding how water is stored and released within catchments is vital for predicting the effects of these changes on both floods and droughts, as well as a host of other co-benefits such as biodiversity and agricultural productivity.
Recent work by Heriot-Watt University, the University of Edinburgh, BGS and the University of Dundee has started to look at these questions at the internationally important UNESCO ecohydrology demonstration site at the Eddleston Water natural flood management research site in the Scottish Borders.
Why is more research needed?
The infiltration of water into the subsurface is a key area of research in NFM including:
- how water infiltrates different soils
- the effect of different soil properties on infiltration rates
- the effect of different land uses on infiltration rates
In addition to understanding how easily water infiltrates, we also need to know how much water can infiltrate and where it goes — in other words, how much water can be stored? There has been much less research on quantifying catchment storage and the role of deeper catchment storage in the context of NFM, despite its potentially fundamental importance to our understanding of hydrology.
The effects of soils and geology on catchment storage
Using multiple methods, including water-level monitoring and stable isotopic tracers, our research estimated water storage across nine subcatchments and correlated the findings with catchment properties such as soil type, land cover and geology. We found that soils and geology dominated plantation forest cover in controlling catchment water storage, suggesting that the effects of changing forest cover are masked by more dominant soil and geological properties.
There are, of course, caveats to the work: we only looked at existing, mature conifer forests and only considered the effect of trees on storage. The impacts of trees on surface roughness and broadleaved trees, which are the main type planted by this and many other NFM projects, were not considered. While the differences are probably minimal, these questions need to be tested through further research. Our findings are, however, consistent with other work looking at land cover and catchment storage and catchment response to storms in Eddleston and elsewhere in Scotland.
Implications for natural flood management
These findings have two significant implications for NFM. The first is to add further criteria for determining the planting of the ‘right trees in the right place’. This storage perspective suggests that tree planting needs to be targeted at areas where potential storage is high but infiltration rates are low, such as highly compacted or degraded soils in relatively permeable catchments. The second is the need to understand dominant catchment controls on runoff in any NFM scheme, which means getting better knowledge of hydrological processes within catchments and their representation within models. We are exploring this second implication in a follow-up study combining stream flow data and water tracer data into a hydrological model, to see if this improves model outputs and therefore understanding of land use change in the catchment.
There is growing pressure to change the way landscapes are managed at large spatial scales to respond to the climate and biodiversity crises. Gaining a better understanding of catchment water storage across different environments is likely to be vital for predicting the multiple benefits and risks of nature-based solutions such as NFM. Future research using both empirical and modelling approaches needs to incorporate these perspectives to underpin effective future management strategies.
About the authors

Prof Alan MacDonald
Head of BGS Groundwater
Leo Peskett
Assistant professor in physical geography
Heriot-Watt University
Leo’s work focuses on evaluating the effectiveness of nature-based solutions in the land and water sectors and engaging with policymakers at international to local levels to bridge research and policy. His recent research has concentrated on:
- the integration of land and water management in the UK
- the impacts of land use on runoff in a natural flood management context
- the use of the natural capital approach in environmental management
Prior to academia, Leo spent a decade heavily involved in the development of global policies to reduce carbon emissions from deforestation (REDD+) and related climate change policies, working with the Overseas Development Institute, UN agencies and governments in the global North and South.
Relative topics
Related news

New data reveals latest mineral workings around Great Britain and Northern Ireland
01/04/2025
The newest release of BGS BritPits provides information on an additional 6500 surface and underground mineral workings.

New seabed geology maps to enable long term conservation around Ascension Island
01/04/2025
BGS deliver the first marine geology and habitat maps for one of the World’s largest marine protected areas.

Exploring Scotland’s hidden energy potential with geology and geophysics: fieldwork in the Cairngorms
31/03/2025
BUFI student Innes Campbell discusses his research on Scotland’s radiothermal granites and how a fieldtrip with BGS helped further explore the subject.

New study reveals long-term effects of deep-sea mining and first signs of biological recovery
27/03/2025
BGS geologists were involved in new study revealing the long-term effects of seabed mining tracks, 44 years after deep-sea trials in the Pacific Ocean.

BGS announces new director of its international geoscience programme
17/03/2025
Experienced international development research leader joins the organisation.

Future projections for mineral demand highlight vulnerabilities in UK supply chain
13/03/2025
New Government-commissioned studies reveal that the UK may require as much as 40 per cent of the global lithium supply to meet anticipated demand by 2030.

Presence of harmful chemicals found in water sources across southern Indian capital, study finds
10/03/2025
Research has revealed the urgent need for improved water quality in Bengaluru and other Indian cities.

Critical Mineral Intelligence Centre hosts second conference
28/02/2025
The Critical Minerals Intelligence Centre conference took place at BGS’s headquarters in Keyworth, Nottinghamshire.

Dr Kathryn Goodenough honoured with prestigious award from The Geological Society
27/02/2025
Dr Kathryn Goodenough has been awarded the Coke Medal, which recognises those who have made a significant contribution to science.

Call for new members and Chair to join the NERC facilities steering committees
18/02/2025
New members are needed to join the committees over the next four years.

BGS announces new director of BGS National Geoscience
12/02/2025
BGS announces its new director of BGS National Geoscience.

NERC Tech Forum 2025
Event from 03/06/2025 to 05/06/2025
The primary aim of the meeting is networking within technology areas in NERC and related research centres.