Land-to-lake micronutrient transfer in east Africa
Sophia shares her experience from her first year as a PhD student with the Inorganic Geochemistry Facility
18/03/2021 By BGS Press
The first year of my PhD has been very exciting, although not without its challenges. In November 2019, one month into my PhD, I travelled to Kenya for the first time. This fieldwork provided initial training in sample collection via the Geochemistry and health in the Kenyan Rift Valley project. With the help of our counterparts at the University of Eldoret, I had the opportunity to scope out some potential experimental soil erosion plots in the Oroba Valley, Nandi County, western Kenya (Figure 1).
The escarpment area of western Kenya is rapidly being converted from native forest into farmland, with the Oroba valley representing differing time periods for land clearance between one and more than 80 years. It was clear from our visit that the local residents were feeling the effect of soil erosion in the area, with one family having recently lost their crop due to heavy rainfall washing away the terraces they had built earlier in the year. This land degradation is not only devastating for the farmers in the area, but the soil also has the potential for loss of nutrients and transfer of metals into the river catchment, with consequences for aquatic biogeochemistry in the Winam Gulf of Lake Victoria.

Figure 1 The Oroba valley, Nandi country, Kenya.
The analysis of these pilot samples indicated that the valley would be an ideal area to model soil erosion processes occurring over differing timescales, within the Lake Victoria catchment. In March, I travelled back to Kenya with Dr Olivier Humphrey to revisit the Oroba valley and begin reference site sampling. During this trip I also had the opportunity to scout out some interesting areas with differing land management practices, for more intensive soil erosion plots in the future.
Unfortunately, this field trip had to be cut short by a couple of days because of the global lockdown due to COVID-19 and a need to return to the UK. However, I was fortunate enough to have collected the planned 10 soil cores to a depth of 30 cm (Figure 2) enabling me to continue work through the summer and autumn of 2020.

Figure 2 Soil core sampling for the determination of radionuclide inventory.
This summer has been somewhat mixed: the lockdown has not enabled me to undertake follow-up fieldwork in June and October, yet I have been able to progress with the laboratory analyses. These included chemical analyses of the samples, with emphasis on gamma spectroscopy to determine the radionuclide inventories of both Cs-137 and unsupported Pb-210 in the collected soil cores.
The data can then be used to determine the extent of soil redistribution processes. The use of these radionuclides as soil erosion tracers have limitations in the southern hemisphere, so I am investigating the possibility of using Pu-239 and Pu-240 as alternative tracers of soil redistribution. To do this, alongside members of the BGS Inorganic Geochemistry team, I will be developing a working method for the pre-concentration and rapid analysis of plutonium isotopes on the inductively coupled plasma mass spectrometer. This will then allow me to determine the best method for quantifying soil redistribution processes and relate the extent of soil erosion with the soil-micronutrient losses and ultimately soil land-to-lake transfers of metals/nutrients to the Lake Victoria catchment.
This work is a progression from previous geochemistry and health work in western Kenya and is interlinked with a Royal Society international collaboration through to 2022 to identify lake-to-land transfers resulting from land-use changes and soil erosion, subsequent impacts on fisheries and the growing aquaculture industry in Lake Victoria. Ultimately, this work will inform consequences for agricultural productivity, nutritional potential of staple foods and aquatic biogeochemistry, with a link to mitigation steps tested by colleagues in Tanzania.
About the author
My name is Sophia and I am a BUFI PhD student based within the BGS Inorganic Geochemistry Facility in Keyworth. My research is entitled ‘Micronutrient and pollution transfer in east African lake catchments‘. This PhD is in partnership with the University of Plymouth and is funded by the NERC ARIES doctoral training programme. Before beginning my PhD, I completed a BSc in chemistry at the University of Surrey, during which I completed a placement year within the BGS Inorganic Geochemistry team (see my previous blog) and this is what first sparked my interest in environmental geochemistry.
Relative topics
Latest blogs

BGS laboratory spotlight: isotopes as recorders of climate and environmental change
06/09/2023
How measuring oxygen and carbon isotopes in tiny fossils improves our understanding of past climate.

In photos: a volcanic field trip
31/08/2023
Volcanologist Samantha Engwell visited the Cascades in the United States to learn more about the 1980 Mount St Helens volcanic eruption.

Understanding Nottinghamshire’s groundwater microbial ecosystems
24/08/2023
PhD student Archita Bhattacharyya is undertaking a project focused on exploring the ecosystem of microorganisms in groundwater of England.

‘Core blimey!’ A PhD fieldwork trip to India
22/08/2023
PhD student Hamish Duncalf-Youngson recently visited Manipur, India, to assess the effects of aquaculture, environmental change and pollution at this internationally important site.

Midlands Innovation TALENT placement at BGS
15/08/2023
Jodie Brown revisits her time at BGS’s Stable Isotope Facility as part of the Midlands Innovation TALENT project, which aims to increase the status of technicians.

bluedot 2023: the importance of geological outreach
10/08/2023
Staff members from various disciplines across BGS worked over the weekend to engage festivalgoers with BGS’s work, specifically critical raw materials.

Boreholes aren’t boring!
31/07/2023
Work experience student Patrick visited BGS to learn more about being a professional rock lover.

My experience as an international PhD student visiting BGS
17/07/2023
PhD student Vanessa Nowinski describes her experience in the stable isotopes labs at BGS, while working on the famous Lake Suigetsu.

Living in a world made of sand
17/07/2023
Tom Bide and Clive Mitchell outline the BGS Sand and Sustainability project, which is working on geoscience-led solutions for the global issue of sand mining.

Scotland’s building stones: over one thousand images now available online
06/07/2023
New images of the BGS Building Stone Collection have been published.

Harare’s clean drinking water challenge
31/05/2023
Researchers from BGS and partners in Zimbabwe report on the urban water supply challenge in the capital city, Harare.

Island groundwater management in the Philippines: part two — Bacolod
23/05/2023
In the second part of their Philippines update, BGS’s Andy Barkwith and Andy McKenzie meet up with other BGS staff members to continue their outreach work.
Footnotes
1. extent of soil redistribution processes
D. E. Walling, A. L. Collins, and H. M. Sichingabula, “Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment,” Geomorphology, vol. 52, no. 3–4, pp. 193–213, Jun. 2003
2. alternative tracers of soil redistribution
C. Alewell, A. Pitois, K. Meusburger, M. Ketterer, and L. Mabit, “239 + 240Pu from ‘contaminant’ to soil erosion tracer: Where do we stand?,” Earth-Science Rev., vol. 172, no. July, pp. 107–123, 2017
3. mitigation steps tested by colleagues in Tanzania
W. H. Blake et al., “Soil erosion in East Africa: An interdisciplinary approach to realising pastoral land management change,” Environ. Res. Lett., vol. 13, no. 12, 2018