Land-to-Lake Micronutrient transfer in East Africa
Sophia shares her experience from her first year as a PhD student with the Inorganic Geochemistry Facility
18/03/2021 By BGS Press
Hi, my name is Sophia and I am a BUFI PhD student based within the BGS Inorganic Geochemistry Facility in Keyworth. My research is entitled Micronutrient and pollution transfer in East African lake catchments. This PhD is in partnership with the University of Plymouth and is funded by the NERC ARIES doctoral training programme. Before beginning my PhD, I completed a BSc in Chemistry at the University of Surrey, during which I completed a placement year within the Inorganic Geochemistry team (see my previous blog, here) and this is what first sparked my interest in Environmental Geochemistry.
The first year of my PhD has been very exciting, although not without its challenges. In November 2019, one month into my PhD, I travelled to Kenya for the first time. This fieldwork provided initial training in sample collection via the Geochemistry and Health in the Kenyan Rift Valley project. With the help of our counterparts at the University of Eldoret, I had the opportunity to scope out some potential experimental soil erosion plots in the Oroba Valley, Nandi County, Western Kenya (Figure 1). The escapement area of western Kenya is rapidly being converted from native forest into farmland, with the Oroba valley representing differing time periods for land clearance between 1 and >80 years. It was clear from our visit that the local residents were feeling the effect of soil erosion in the area, with one family having recently lost their crop due to heavy rainfall washing away the terraces they had built earlier in the year. This land degradation is not only devastating for the farmers in the area, but the soil also has the potential for loss of nutrients and transfer of metals into the river catchment, with consequences for aquatic biogeochemistry in the Winam Gulf of Lake Victoria.

Figure 1 – The Oroba valley, Nandi country, Kenya
The analysis of these pilot samples indicated that the valley would be an ideal area to model soil erosion processes occurring over differing timescales, within the Lake Victoria catchment. In March, I travelled back to Kenya with Dr Olivier Humphrey to revisit the Oroba valley and begin reference site sampling. During this trip I also had the opportunity to scout out some interesting areas with differing land management practices, for more intensive soil erosion plots in the future. Unfortunately, this field trip had to be cut short by a couple of days because of the global lockdown due to COVID-19, and a need to return to the UK. However, I was fortunate enough to have collected the planned 10 soil cores to a depth of 30cm (Figure 2) enabling me to continue work through the summer and autumn of 2020. This summer has been somewhat mixed, in that the lockdown has not enabled me to undertake follow-up fieldwork in June and October, yet I have been able to progress with the laboratory analyses.

Figure 2 – Soil core sampling for the determination of radionuclide inventory
These included chemical analyses of the samples, with emphasis on Gamma Spectroscopy to determine the radionuclide inventories of both Cs-137 and unsupported Pb-210 in the collected soil cores. This data can then be used to determine the extent of soil redistribution processes. The use of these radionuclides as soil erosion tracers have limitations in the southern hemisphere, so I am investigating the possibility of using Pu-239 and Pu-240 as alternative tracers of soil redistribution. To do this, alongside members of the Inorganic Geochemistry team, I will be developing a working method for the pre-concentration and rapid analysis of Plutonium isotopes on the inductively coupled plasma mass spectrometer. This will then allow me to determine the best method for quantifying soil redistribution processes and relate the extent of soil erosion with the soil-micronutrient losses and ultimately soil land-to-lake transfers of metals/nutrients to the Lake Victoria catchment. This work is a progression from previous geochemistry and health work in western Kenya and is interlinked with a Royal Society International Collaboration through to 2022 to identify lake-to-land transfers resulting from land-use changes and soil erosion, subsequent impacts on fisheries and the growing aquaculture industry in Lake Victoria. Ultimately, this work will inform consequences for agricultural productivity, nutritional potential of staple foods and aquatic biogeochemistry, with a link to mitigation steps tested by colleagues in Tanzania.
Latest blogs

The importance of biodiversity in achieving Net Zero
02/07/2022
Protecting the natural world is an important component in achieving Net Zero.

Working at BGS as an postgraduate intern
15/06/2022
Environmental geochemistry masters student, Katie Williams, shares her experience following a placement in the Stable Isotope Facility

Staff sustainability practices around BGS
01/06/2022
BGS recently made time for employees at our sites around the UK to spend a few hours on projects focusing on increasing sustainability, both in their offices and in the local area.
Mining hazard data (not including coal) from BGS
17/05/2022
Great Britain has over 250 000 documented mining sites and the underground voids resulting from past mining activity pose a possible hazard. Knowledge of the distribution of former mining areas will help us to plan for future development and ongoing maintenance.

Introducing GeoCoast: new coastal datasets from BGS
20/04/2022
GeoCoast is an integrated GIS package of datasets designed to inform and support coastal management and adaptation.

Six changing coastlines and how climate change could affect them
12/04/2022
We explore how parts of the British coastline are changing and what important factors we should consider in terms of natural hazards, adaptation and resilience.

Sea level rise and coastal erosion: what’s the real impact?
05/04/2022
How much of an issue are coastal vulnerabilities and what do we need to consider to increase our resilience to future events?

The importance of staff networks
18/03/2022
A sense of inclusivity in the workplace is essential for staff health and well-being. Staff networks can help this by bringing together people from a diverse group of backgrounds, as Romesh Palamakumbura explores.

Building surveys in La Palma during the 2021 volcanic eruption
18/03/2022
In December 2021, BGS BUFI student Sara Osman visited La Palma in the Canary Islands to assess buildings damaged during the Cumbre Vieja volcanic eruption. In this blog, she talks about her experiences on the island.

My role as a BGS Geochemistry Technician
08/03/2022
Kotryna Savickaite tells us about her new role as she settles in at BGS Keyworth.

Understanding environmental impact through the study of sediments
23/02/2022
A new study aims to understand the range of organic molecules present in urban waterway sediments from different locations around the world.

Investing in nature
14/02/2022
BGS and local community volunteers join together to plant 12 000 spring bulbs and help native wildlife to thrive.
Footnotes
1. extent of soil redistribution processes
D. E. Walling, A. L. Collins, and H. M. Sichingabula, “Using unsupported lead-210 measurements to investigate soil erosion and sediment delivery in a small Zambian catchment,” Geomorphology, vol. 52, no. 3–4, pp. 193–213, Jun. 2003
2. alternative tracers of soil redistribution
C. Alewell, A. Pitois, K. Meusburger, M. Ketterer, and L. Mabit, “239 + 240Pu from ‘contaminant’ to soil erosion tracer: Where do we stand?,” Earth-Science Rev., vol. 172, no. July, pp. 107–123, 2017
3. mitigation steps tested by colleagues in Tanzania
W. H. Blake et al., “Soil erosion in East Africa: An interdisciplinary approach to realising pastoral land management change,” Environ. Res. Lett., vol. 13, no. 12, 2018