Deep drilling in Europe’s oldest and most species-rich lake provides new insights into evolution
The older and more stable an ecosystem is, the longer lived its species and the more stable the species communities are.
02/10/2020
An international research team led by the Justus Liebig University Giessen and the University of Cologne, in collaboration with the British Geological Survey (BGS), gained these new insights into evolution by drilling deep into the sediments of Lake Ohrid.
The 1.4-million-year-old lake on the border between Albania and North Macedonia is not only the oldest lake in Europe, but with more than 300 endemic species, i.e. species that only occur there, it is also the most species-rich.

The 1.4 million year old Lake Ohrid on the border between Albania and Northern Macedonia (Photo credit: Thomas Wilke).
To study the evolutionary dynamics of Lake Ohrid since its formation, the scientists combined the environmental and climate data of a 568-meter-long sediment core with the fossil records of over 150 endemic diatom species.
Dr Jack Lacey, a geochemist from the BGS, used chemical data from the mud to understand past changes in the hydroclimate of Lake Ohrid. He said:
“The combination of our data and the fossil diatom record of Lake Ohrid provide us with a link between geological processes, environmental change, and the biological evolution of endemic species within the lake.
“Using geochemical data from the layers of mud that built up over time at the bottom of Lake Ohrid, we have unravelled a 1.4-million-year history of lake development and climate change, that are interwoven and captured in the sediment record.”
The data show that shortly after the formation of the lake, new species emerged within a few thousand years. Many of them died out again very quickly in the relatively small and shallow lake.
The research team explains this by the fact that young lakes of small size offer many new ecological opportunities, but are also particularly sensitive to environmental changes such as fluctuations in temperature, lake level, and nutrient availability.
The geochemistry of lake muds is a recorder of past changes in rainfall and major shifts in the water level of Lake Ohrid.
After the lake became deeper and larger, as indicated by shifts in the geochemistry, the speciation and extinction processes slowed down dramatically.
The scientists attribute this to fewer new habitats emerging, the species richness approaching an ecological carrying capacity, and an increasing environmental and climate buffering of the lake.
The finding that, in the history of Lake Ohrid, a volatile assemblage of evolutionarily short-lived species developed into a stable community of long-lived species provides a new understanding of the evolutionary dynamics in ecosystems.
The study, which has now been published in the journal Science Advances, has importance for future biodiversity research.
Citation
The full paper can be accessed here: Wilke et al. (2020): Deep drilling reveals massive shifts in evolutionary dynamics after formation of ancient ecosystem. Science Advances, 6(40), eabb2943, doi.org/10.1126/sciadv.abb2943.
About the author

Hannah Pole
Communications and media manager
Related news

UK’s first Critical Minerals Intelligence Centre to help build a more resilient economy
04/07/2022
The UK’s first-ever centre to collect and analyse information on the supply of critical minerals, which are vital to the UK’s economic success and national security, has officially launched.

BGS launches new Geology Viewer
30/06/2022
A new app providing easy access to the subsurface of Britain has been released by BGS.

Major research project will support UK’s energy transition
27/06/2022
BGS will lead the new research project ‘Managing the Environmental Sustainability of the Offshore Energy Transition’.

Climate change and human exploitation linked to historic decline in Atlantic salmon
08/06/2022
New research reveals that both a change in climate and human exploitation played a role in a decline in North Atlantic salmon populations.

Scientists reveal extraordinary ecosystems in the deepest part of the Indian Ocean
08/06/2022
New technology has enabled marine scientists to capture some of the world’s first images of previously unexplored habitats in the deepest point of the Indian Ocean.

Positively blooming: Japanese flowering cherry trees planted at BGS Keyworth to mark the Queen’s platinum jubilee
31/05/2022
The walkway of eight trees has been planted in the grounds of BGS headquarters in Keyworth to celebrate Queen Elizabeth II’s 70 years on the throne.

BGS to join worldwide geoscience community at EGU General Assembly 2022
20/05/2022
The EGU General Assembly 2022 brings together geoscientists from all over the world for one meeting from 23 to 27 May.

New publication shows geological supply of bismuth is greater than previously understood
17/05/2022
A new publication highlights the wide-ranging geological availability of bismuth, a critical raw material that has historically been overlooked in academic research.

UK Minerals Yearbook 2021 available to download
11/04/2022
The UK Minerals Yearbook 2021 provides essential information about the production, consumption and trade of UK minerals up to 2020.

New BGS datasets for coastal management, planning and adaptation in the face of climate change
29/03/2022
BGS GeoCoast is a package of geospatial datasets designed to provide information on the geological conditions and constraints around the coastline of Britain.

World Water Day 2022
22/03/2022
Groundwater: how BGS is helping to make the invisible visible

BGS and WaterAid publish new research on groundwater resilience
21/03/2022
Most African countries have enough groundwater reserves to face at least five years of drought, new research reveals