Good practice for sand mining
Tom Bide and Clive Mitchell outline how BGS is working on geoscience-led solutions for the global issue of sand mining.
24/10/2023
Rapidly increasing demand for sand in many countries, combined with little or no governance, has resulted in sand mining causing wide ranging negative environmental and economic impacts. This is driven by the increasing demand for concrete due to urban growth and the need for good-quality housing and infrastructure in many parts of the world. BGS is working on geoscience-led solutions to this problem as part of the International Geoscience Research and Development (IGRD) project. We covered how we are going about this in our first blog, Living in a world made of sand.
To enable the public, researchers, geological surveys, regulators, industry and consumers to understand the issues around sand mining, the BGS project team worked with Sarah Hannis, a freelance illustrator, to create images that capture the current situation and potential solutions. These aim to show how geoscience data and information can be used for the monitoring and management of sand resources.
The current situation

The current sand mining situation. © Sarah Hannis Illustration.
In many countries, large-scale extraction of sand from rivers and the nearshore environment causes:
- increased erosion of banks and beaches
- damage to infrastructure
- harm to water quality, farmland and biodiversity
- increased risk of flooding
Sand supply is often inadequate to meet future needs, causing price fluctuations and stockpiling. There is little or no consideration by the consumer of where this essential building raw material comes from, no transparency in the supply chain, and no linkage between urban planning and those with responsibility for managing sand resources. in many places this is a supply system that is either breaking down or has effectively already broken down, in many places.
In the following illustrations, we show examples of good practice that could be considered to help break out of this unsustainable scenario.
Monitoring

Monitoring sand remotely. © Sarah Hannis Illustration.
The initial steps in controlling extraction and increasing supply from more sustainable sources are:
- better understanding of how much sand there is
- understanding how much sand is being produced
- knowing where the sand comes from
- knowing where the sand is used
Traditionally, surveys of the sand industry by regulatory authorities are a key source of data. Instead of surveying, which can be expensive, time consuming and require a strong regulatory regime, the sand team at BGS has been using remote sensing, a more accessible, alternative, way to monitor the activities of the sand industry.
Recycling

Recycling sand. © Sarah Hannis Illustration.
Moving towards a circular economy is a key part of any solution to reduce the environmental impact of natural resource consumption. Enabling a circular economy requires a clear understanding of the material supply chain as well as collaboration between planners, consumers and producers. Utilisation of construction, excavation and demolition waste (often referred to as CDEW) may be a viable alternative to natural sand, as may recycling of other products, such as crushed glass. Re-use of modular building material may also help reduce the demand for natural sand.
Use of alternative primary materials

The viability of using alternative building materials. © Sarah Hannis Illustration.
One of the main alternatives to natural sand is ‘manufactured sand’, which is produced from the crushing of hard rocks. This can be a primary product or a by-product from mine (sometimes known as ore sand) and quarry waste. Manufactured sand has similar physical and chemical properties to natural sand. It is also easier to manage the environmental effects from quarry sites, which are often located far from the sensitive environments where river and beach sand is found. However, consideration needs to be given to the increased energy often required to produce manufactured sand.
Sourcing of natural sands

Responsible sourcing of natural sand. © Sarah Hannis Illustration.
Mining of natural sand should be targeted at ‘fossil’ or geological deposits formed from the sediments of ancient river systems or offshore environments. These can be located well away from active water courses, beaches and marine environments. Extraction needs to be carefully regulated; one way of achieving this is to implement tax or royalties to ensure local administrations take an active interest in extraction and the sand resource is valued.
Reduction of use

The reduction of sand use. © Sarah Hannis Illustration.
Reducing demand for, and therefore consumption of, sand will help to alleviate the pressure on sensitive environments. Reducing the use of concrete is one way to reduce our reliance on sand.
There are many ways to reduce the use of concrete. In some applications, timber may be a sustainable alternative; increased use of steel and glass in construction may also reduce demand for concrete. Reduction can also be achieved by smarter design. For instance, reducing the size of floor spans or constructing smaller buildings helps to reduce material consumption.
Using these illustrations
All illustrations are available to re-use for non-commercial purposes relating to the promotion of good practice for sand mining provided the source is acknowledged and the copyright notice accompanying the illustration is retained.
High-resolution versions of the images are available to download.
About the authors

Tom Bide
Minerals geoscientist

Clive Mitchell
Industrial minerals geologist
Relative topics
Latest blogs

Industry-leading data sharing partnership announced
02/11/2023
A data sharing partnership has been agreed between BGS and Ossian, allowing BGS to advance its knowledge of the rock and soil conditions under the seabed.

The art of boreholes: Essex artists visit the BGS to be inspired by our library of geological core
02/11/2023
Two UK-based artists visitors aim to turn art and earth science into a collaborative experience that facilitates discussion on land usage.

Good practice for sand mining
24/10/2023
Tom Bide and Clive Mitchell outline how BGS is working on geoscience-led solutions for the global issue of sand mining.

Rare hornet moth colony found at BGS Keyworth
03/10/2023
A colony of these rare clearwing moths has recently been discovered on site at the BGS headquarters in Keyworth.

Nurturing early career scientists: 20 years of undergraduate industrial placements at BGS
28/09/2023
Michael Watts, BGS Head of Inorganic Chemistry, and previous placement students reflect on their experiences working at BGS’s Inorganic Geochemistry Facility over the past 20 years.

BGS laboratory spotlight: isotopes as recorders of climate and environmental change
06/09/2023
How measuring oxygen and carbon isotopes in tiny fossils improves our understanding of past climate.

In photos: a volcanic field trip
31/08/2023
Volcanologist Samantha Engwell visited the Cascades in the United States to learn more about the 1980 Mount St Helens volcanic eruption.

Understanding Nottinghamshire’s groundwater microbial ecosystems
24/08/2023
PhD student Archita Bhattacharyya is undertaking a project focused on exploring the ecosystem of microorganisms in groundwater of England.

‘Core blimey!’ A PhD fieldwork trip to India
22/08/2023
PhD student Hamish Duncalf-Youngson recently visited Manipur, India, to assess the effects of aquaculture, environmental change and pollution at this internationally important site.

Midlands Innovation TALENT placement at BGS
15/08/2023
Jodie Brown revisits her time at BGS’s Stable Isotope Facility as part of the Midlands Innovation TALENT project, which aims to increase the status of technicians.

bluedot 2023: the importance of geological outreach
10/08/2023
Staff members from various disciplines across BGS worked over the weekend to engage festivalgoers with BGS’s work, specifically critical raw materials.

Boreholes aren’t boring!
31/07/2023
Work experience student Patrick visited BGS to learn more about being a professional rock lover.