BGS partners with Arcadis in £70 000 research programme to support brownfield development
New research will explore microorganisms with the potential to breakdown hazardous chemicals in the environment.
15/10/2020 By BGS Press
New research will explore microorganisms with the potential to breakdown hazardous chemicals in the environment.
The British Geological Survey (BGS) will take part in a novel £70 000 research programme to support the clean up of brownfield sites using natural biological processes, in partnership with Arcadis, a leading global design and consultancy organisation for natural and built assets.
The research will be used to understand and evaluate how microorganisms naturally present in contaminated soil and groundwater can be used to bioremediate the chemical 1,4-dioxane, an emerging contaminant that is increasingly detected in groundwater and recognised as a potential risk to human health and the environment around the world.
The project is being funded by the Environmental Biotechnology Network (EBNet), with a contribution from Arcadis, and is expected to take around twelve months to complete.
We need to better understand the wide range of legacy chemicals present in post-industrial brownfield land. Many of these emerging contaminants have either previously not been looked for or detected, but they are hazardous to people and to the environment.
The more we understand them, the better we can make decisions about how to remove them from post-industrial land to make sites safe and suitable for redevelopment.
BGS microbiologist Simon Gregory.
Reported health problems from short-term exposure to 1,4-dioxane include breathing problems, vertigo, drowsiness, headaches and skin irritation. Long-term exposure can lead to kidney and liver damage, and can even be fatal.
Due to its high solubility and low degradability under some conditions, 1,4-dioxane can be a challenge to remove from soil and groundwater. However, it is known that it can be degraded by soil microorganisms possessing some types of monooxygenase enzymes, a family of enzymes that can help to breakdown a wide range of chemicals including many organic pollutants.
Dr Monica Heintz, a geoscientist at Arcadis specialising in natural attenuation and bioremediation, said: ‘While biodegradation of 1,4-dioxane has been demonstrated, the microorganisms responsible for this process remain under-characterised. This research will increase our understanding of microorganisms responsible for 1,4-dioxane biodegradation and will lead to genetic surveys that can be used to assess biodegradation of 1,4-Ddoxane at sites around the world.’
BGS and Arcadis will gather information using a range of DNA-based techniques to quantify and explore the diversity of organisms that produce monooxygenase enzymes in contaminated sites and understand which enzymes are most effective at biodegradation.
This approach to characterising natural attenuation mechanisms will allow confidence in the ability of microorganisms to detoxify 1,4-dioxane and provide a sustainable, cost-effective management solution for brownfield stakeholders.
Dr Ian Ross, Senior Technical Director at Arcadis UK.
Relative topics
For further information please contact:
Call: +44 (0)7790 607 010.
(Please do not text this number. We accept calls or email only.)
Email: bgspress@bgs.ac.uk
Notes
- A brownfield site is an area that has been used before and is typically disused or derelict Such sites are usually abandoned areas in towns and cities that have been used previously for industrial and commercial purposes.
- Historical industrial processes often produced harmful byproducts, residues and wastes that were poorly managed. The chemicals contained in these legacy materials can threaten human health and the environment.
- Examples of land uses highly likely to have resulted in contamination include chemical works, landfill sites and textile mills.
- Funding for the project is being awarded by the Environmental Biotechnology Network (EBNet), one of 6 Phase II networks in industrial biotechnology and bioenergy funded primarily by the Biotechnology and Biological Sciences Research Council (BBSRC) with additional funding from the Engineering and Physical Sciences Research Council (EPSRC).
British Geological Survey
The British Geological Survey (BGS) is a world-leading applied geoscience research centre that is part of UK Research and Innovation (UKRI) and affiliated to the Natural Environment Research Council (NERC). BGS core science provides objective and authoritative geoscientific data, information and knowledge to inform UK Government on the opportunities and challenges of the subsurface. It undertakes national and public good research to understand earth and environmental processes in the UK and globally. Please see www.bgs.ac.uk
Arcadis
Arcadis is the leading global design and consultancy firm for natural and built assets. Applying our deep market sector insights and collective design, consultancy, engineering, project and management services, we work in partnership with our clients to deliver exceptional and sustainable outcomes throughout the lifecycle of their natural and built assets. We are 28 000 people, active in over 70 countries, that generate €3.5 billion in revenues. We support UN-Habitat with knowledge and expertise to improve the quality of life in rapidly growing cities around the world. Please see www.arcadis.com/en/global/
Related news

Why do we store geological core?
11/09/2025
With space at a premium and the advance of new digitisation techniques, why does retaining over 600 km of physical specimens remain of national importance?

New seabed sediment maps reveal what lies beneath the waves
03/09/2025
Marine ecosystem science and offshore infrastructure will be boosted by a new dataset showing sediment composition across the UK continental shelf.

New geological ‘pathways’ discovered beneath Welsh capital
02/09/2025
Scientists have discovered cavities in the clay underneath Cardiff, which will influence the siting of future geothermal developments.

BGS artificial ground data: what do you need from a geological survey?
28/08/2025
BGS is seeking user feedback on artificial ground data: how you use it, what information you consider, and what we can do to improve our offering.

New research published on brownfield land
27/08/2025
National Brownfield Forum research on the interactions of policies affecting the planning and development of brownfield land has been published.

Join our consortium – de-risking underground thermal energy storage
25/08/2025
BGS is inviting interested parties to investigate how site-scale geological data can be used to optimise thermal storage scheme performance.

Dr Kathryn Goodenough appointed as honorary professor by the University of Aberdeen
25/08/2025
Dr Goodenough will take up the position within the School of Geosciences with a focus on critical minerals and the energy transition.

BGS scientists work with United Nations to update hazard profiles
21/08/2025
From tsunamis to sinkholes, the profiles provide a standardised, internationally agreed definition of hazards to support disaster risk management worldwide.

Scientists uncover secrets of Stonehenge’s mysterious cattle
20/08/2025
Cutting-edge analysis of a Neolithic cow tooth dating back to the construction of the famous landmark provides evidence of Welsh origins.

New study reveals geological facility’s value to UK economy
19/08/2025
For the first time, an economic valuation report has brought into focus the scale of the National Geological Repository’s impact on major infrastructure projects.

Is your region susceptible? Britain’s geohazard hotspots revealed
14/08/2025
From sinkholes to radon: new maps highlight the most geologically at-risk regions

New platform highlights geothermal potential across the UK
11/08/2025
A new government-funded geothermal initiative, which includes an interactive map, has launched to help decision makers assess the geothermal potential across the UK.