A new BGS platform to model volcanic ash in the atmosphere
BGS has supported the creation of a new modelling platform to aid research workflows around ash dispersion simulation.
16/12/2020
Fabio Dioguardi has been working as a volcanologist at BGS since 2015. His fundamental and applied research focuses on the physical processes and impacts of explosive volcanic eruptions by means of an integrated approach combining field data, experiments and modelling.
Volcanic tephra in the atmosphere and on the ground produced during explosive volcanic eruptions represents a threat to human health and infrastructure and possible serious disruption to various sectors of economy and business. For example, volcanic ash (tephra less than 2 mm in size) in the atmosphere can seriously damage aircrafts, leading to preventive measures like airspace closure in the event of an explosive volcanic eruption, similar to the 2010 eruption of Eyjafjallajökull in Iceland.
In order to mitigate the potential impact of these natural events, simulation tools to predict the advection and sedimentation of tephra in the atmosphere have been developed and are currently used by volcano observatories, Volcanic Ash Advisory Centres (VAAC) and researchers. The simulation of such complex phenomena is not an easy task, but it consists of two fundamental steps.
The first step is characterisation of the source, i.e. modelling of the volcanic plume by quantifying parameters like the source mass flux of emitted volcanic material (also known as mass eruption rate (MER)), the spatial evolution of the plume (e.g. top height; wind-blown trajectory), particle characteristics (grain size; density; shape), and duration of the eruption.
The second step involves simulation of the advection-diffusion-sedimentation of the emitted volcanic tephra cloud.
Both steps are coupled to numerical weather prediction model outputs, since weather conditions like temperature, humidity and wind influence both processes. For example, temperature and humidity influence the plume rise in the atmosphere, while wind can bend the plume and plays a major role in the near to far-field transport and sedimentation of volcanic ash.
The workflow leading to dispersion simulation outputs can be time-consuming and complicated, so BGS’s Innovation Flexible Fund supported the creation of a new modelling platform (BGS automatic ash dispersion modelling, or BGS-AADM) designed to simplify this workflow for both real-time and reanalysis (past eruption) applications.
This platform:
- automatically downloads and processes data of the NOAA-GFS numerical weather prediction model
- characterises the source conditions, particularly the top plume height and mass eruption rate, using both the BGS-USGS eruption source parameters database and REFIR, a semi-automatic tool for the quantification of top plume height and mass eruption rate (and associated uncertainty) based on observational data
We have used REFIR in collaboration with the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) to quantify these source parameters on selected test past eruptions of Mount Etna in the framework of the Horizon 2020 EUROVOLC project activities (Figure 1).

Figure 1 Plume height (PH) and mass eruption rate (MER) assessed by REFIR for the 12 January 2011 plume from Mount Etna. Left: PH time series (red line: maximum; blue line: average; green line: minimum). Right: MER time series (solid yellow line: maximum; dotted red line: best estimate; solid green line: minimum). BGS © UKRI.
The platform also:
- runs dispersion simulations with two dispersion models, HYSPLIT and FALL3D
- automatically produces contour plots of the dispersion simulations results with a new Python package (Ash Model Plotting) developed at BGS in the framework of the Innovation Flexible Fund project
Graphical outputs include maps of total column mass loading in the atmosphere, i.e. the total mass of tephra integrated from the ground to the top of the volcanic cloud, tephra concentration at various altitudes and total tephra deposit (mass loading) on the ground (Figure 2).

Figure 2 An example of graphical outputs obtained for an eruption scenario at Grímsvötn (Iceland). The plot on the left shows the total mass of volcanic particles present in the atmosphere from the sea level to the top of the ash cloud. The plot on the right shows the total mass of volcanic particles deposited on the ground from the beginning to the end of the simulated eruption. BGS © UKRI.
BGS-AADM is designed for both research applications on explosive volcanic eruptions producing ash clouds (e.g., the analysis of past events) and real-time applications during volcanic unrest and eruptions. In particular, it will be used as a further source of information to support BGS response during a future volcanic eruption in Iceland, in particular for better assessing the uncertainty of eruption source parameters and dispersion model outputs.
Jenkins, S. F., Wilson, T. M., Magill, C. R., Stewart, C., Blong, R. J., Marzocchi, W., et al. (2015). Volcanic ash fall hazard and risk. In S. C. Loughlin, R. S. J. Sparks, S. K. Brown, S. F. Jenkins, & C. Vye‐Brown (Eds.), Global Volcanic Hazards and Risk (pp. 173–221). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781316276273.00
Dioguardi, F., Beckett, F., Dürig, T., Stevenson, J. A. (2020) “The impact of eruption source parameter uncertainties on ash dispersion forecasts during explosive volcanic eruptions”, J. Geophys. Res. Atmospheres, 125(17), https://doi.org/10.1029/2020JD032717
Costa, A., Suzuki, Y. J., Cerminara, M., Devenish, B. J., Ongaro, T. E., Herzog, M., van Eaton, A. R., Denby, L. C., Bursik, M., de Michieli Vitturi, M., Engwell, S., Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G., Tait, S., Kaminski, E., Mastin, L. G., Woodhouse, M. J., Phillips, J. C., Hogg, A. J., Degruyter, W., & Bonadonna, C. (2016). Results of the eruptive column model inter‐comparison study. Journal of Volcanology and Geothermal Research, 326, 2–25. https://doi.org/10.1016/j.jvolgeores.2016.01.017
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., Costa, A. (2020) “FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numeric”, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020
Dürig, T., Gudmundsson, M. T., Dioguardi, F., et al. (2018) “REFIR- A multi-parameter system for near real-time estimates of plume-height and mass eruption rate during explosive eruptions”, J. Volcanol. Geotherm. Res. 360, 61-83, https://doi.org/10.1016/j.jvolgeores.2018.07.003
Relative topics
Related news

World Water Day 2023: groundwater photo stories
22/03/2023
A showcase of groundwater use from around the world highlighting how developing groundwater has benefited the lives of many people.

New seabed geology maps for offshore Yorkshire
14/03/2023
Offshore Yorkshire is the latest map to be released in BGS’s series of fine-scale digital seabed maps.

New BGS karst report released for Hampshire and Wiltshire
10/03/2023
The report details the evidence for karst processes in areas of soluble rocks that have not previously been considered karstic.

Dr Corinna Abesser appointed BGS Policy Director
08/03/2023
Dr Abesser will be supporting BGS staff in the translation of their science outputs to inform policy and regulation as well as advising senior management on policy-related issues.

Melinda Lewis awarded prestigious Whitaker Medal for outstanding contribution to hydrogeology
01/03/2023
Melinda Lewis, BGS Honorary Research Associate, has been awarded the Geological Society Whitaker Medal, recognising outstanding long-term contributions to hydrogeology.

BGS welcomes two new board appointments for 2023
22/02/2023
Prof Carol Frost, professor emerita of the faculty of geology and geophysics at the University of Wyoming, and Dr Jenny Pyper, former CEO of the Utility Regulator for Northern Ireland and interim head of the Northern Ireland Civil Service, will take up their positions on the BGS Board from 1 March 2023.

Six BGS datasets for assessing shrink–swell subsidence hazards
17/02/2023
Shrink–swell subsidence is one of the most significant geological hazards affecting the UK. BGS has six datasets to help assess the problem.

The Kahraman Maraş earthquake sequence, Turkey/Syria
14/02/2023
Two large earthquakes occurred within hours of each other on 6 February 2023.

One year on: reflections on the Hunga Tonga-Hunga Ha’apai volcanic eruption
18/01/2023
The eruption of the Hunga Tonga-Hunga Ha’apai Volcano in January 2022 has highlighted a global unpreparedness for the impacts from large-scale global events.

New geological map of the Maltese Islands published
19/12/2022
The new map, commissioned by Malta’s Continental Shelf Department, is the first update for almost 30 years.

Work complete on 1000 solar panels at BGS
07/12/2022
More than 1000 energy-saving solar panels have been installed at BGS’s headquarters in Keyworth, Nottinghamshire.

Updated radon map for Great Britain published
02/12/2022
The UK Health Security Agency and BGS have published an updated radon potential map for Great Britain.