A new BGS platform to model volcanic ash in the atmosphere
BGS has supported the creation of a new modelling platform to aid research workflows around ash dispersion simulation.
16/12/2020Fabio Dioguardi has been working as a volcanologist at BGS since 2015. His fundamental and applied research focuses on the physical processes and impacts of explosive volcanic eruptions by means of an integrated approach combining field data, experiments and modelling.
Volcanic tephra in the atmosphere and on the ground produced during explosive volcanic eruptions represents a threat to human health and infrastructure and possible serious disruption to various sectors of economy and business. For example, volcanic ash (tephra less than 2 mm in size) in the atmosphere can seriously damage aircrafts, leading to preventive measures like airspace closure in the event of an explosive volcanic eruption, similar to the 2010 eruption of Eyjafjallajökull in Iceland.
In order to mitigate the potential impact of these natural events, simulation tools to predict the advection and sedimentation of tephra in the atmosphere have been developed and are currently used by volcano observatories, Volcanic Ash Advisory Centres (VAAC) and researchers. The simulation of such complex phenomena is not an easy task, but it consists of two fundamental steps.
The first step is characterisation of the source, i.e. modelling of the volcanic plume by quantifying parameters like the source mass flux of emitted volcanic material (also known as mass eruption rate (MER)), the spatial evolution of the plume (e.g. top height; wind-blown trajectory), particle characteristics (grain size; density; shape), and duration of the eruption.
The second step involves simulation of the advection-diffusion-sedimentation of the emitted volcanic tephra cloud.
Both steps are coupled to numerical weather prediction model outputs, since weather conditions like temperature, humidity and wind influence both processes. For example, temperature and humidity influence the plume rise in the atmosphere, while wind can bend the plume and plays a major role in the near to far-field transport and sedimentation of volcanic ash.
The workflow leading to dispersion simulation outputs can be time-consuming and complicated, so BGS’s Innovation Flexible Fund supported the creation of a new modelling platform (BGS automatic ash dispersion modelling, or BGS-AADM) designed to simplify this workflow for both real-time and reanalysis (past eruption) applications.
This platform:
- automatically downloads and processes data of the NOAA-GFS numerical weather prediction model
- characterises the source conditions, particularly the top plume height and mass eruption rate, using both the BGS-USGS eruption source parameters database and REFIR, a semi-automatic tool for the quantification of top plume height and mass eruption rate (and associated uncertainty) based on observational data
We have used REFIR in collaboration with the Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italy) to quantify these source parameters on selected test past eruptions of Mount Etna in the framework of the Horizon 2020 EUROVOLC project activities (Figure 1).
The platform also:
- runs dispersion simulations with two dispersion models, HYSPLIT and FALL3D
- automatically produces contour plots of the dispersion simulations results with a new Python package (Ash Model Plotting) developed at BGS in the framework of the Innovation Flexible Fund project
Graphical outputs include maps of total column mass loading in the atmosphere, i.e. the total mass of tephra integrated from the ground to the top of the volcanic cloud, tephra concentration at various altitudes and total tephra deposit (mass loading) on the ground (Figure 2).
BGS-AADM is designed for both research applications on explosive volcanic eruptions producing ash clouds (e.g., the analysis of past events) and real-time applications during volcanic unrest and eruptions. In particular, it will be used as a further source of information to support BGS response during a future volcanic eruption in Iceland, in particular for better assessing the uncertainty of eruption source parameters and dispersion model outputs.
Jenkins, S. F., Wilson, T. M., Magill, C. R., Stewart, C., Blong, R. J., Marzocchi, W., et al. (2015). Volcanic ash fall hazard and risk. In S. C. Loughlin, R. S. J. Sparks, S. K. Brown, S. F. Jenkins, & C. Vye‐Brown (Eds.), Global Volcanic Hazards and Risk (pp. 173–221). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9781316276273.00
Dioguardi, F., Beckett, F., Dürig, T., Stevenson, J. A. (2020) “The impact of eruption source parameter uncertainties on ash dispersion forecasts during explosive volcanic eruptions”, J. Geophys. Res. Atmospheres, 125(17), https://doi.org/10.1029/2020JD032717
Costa, A., Suzuki, Y. J., Cerminara, M., Devenish, B. J., Ongaro, T. E., Herzog, M., van Eaton, A. R., Denby, L. C., Bursik, M., de Michieli Vitturi, M., Engwell, S., Neri, A., Barsotti, S., Folch, A., Macedonio, G., Girault, F., Carazzo, G., Tait, S., Kaminski, E., Mastin, L. G., Woodhouse, M. J., Phillips, J. C., Hogg, A. J., Degruyter, W., & Bonadonna, C. (2016). Results of the eruptive column model inter‐comparison study. Journal of Volcanology and Geothermal Research, 326, 2–25. https://doi.org/10.1016/j.jvolgeores.2016.01.017
Folch, A., Mingari, L., Gutierrez, N., Hanzich, M., Macedonio, G., Costa, A. (2020) “FALL3D-8.0: a computational model for atmospheric transport and deposition of particles, aerosols and radionuclides – Part 1: Model physics and numeric”, Geosci. Model Dev., 13, 1431–1458, https://doi.org/10.5194/gmd-13-1431-2020
Dürig, T., Gudmundsson, M. T., Dioguardi, F., et al. (2018) “REFIR- A multi-parameter system for near real-time estimates of plume-height and mass eruption rate during explosive eruptions”, J. Volcanol. Geotherm. Res. 360, 61-83, https://doi.org/10.1016/j.jvolgeores.2018.07.003
Relative topics
Related news
Twenty years on: the Indian Ocean earthquake and tsunami
26/12/2024
Boxing Day 2024 marks 20 years since the Indian Ocean earthquake and tsunami. Prof David Tappin reflects on the disaster and discusses what we have learnt since 2004.
Airlines, shipping companies and sleigh drivers rush to update crucial navigation systems ahead of Christmas rush
17/12/2024
Release of major upgrade to a new model tracking magnetic north prompts global reset of satellite tracking systems across trade and passenger transport routes.
BGS awarded Athena SWAN Silver status
12/12/2024
BGS are delighted to have been awarded Athena SWAN Silver status in recognition of our ongoing commitment to gender equality
BGS makes significant advance in mineral data accessibility
10/12/2024
A new public application programming interface for the BGS World Mineral Statistics Database will revolutionise how users interact with critical data.
Dynamics of land-to-lake transfers in the Lake Victoria Basin
09/12/2024
In June 2024, a UK/Kenya research team shared research findings from a collaborative, four-year field and experimental programme within Kenya.
Prehistoric power: 250-million-year-old rocks could contain secrets to net zero future
05/12/2024
BGS has completed a comprehensive scan of Mercia Mudstone rocks that could hold geological secrets of the UK’s past and provide a boost for net zero.
The challenge of assessing the UK economy’s dependence on mineral supply
28/11/2024
Critical, essential, or just plain important? Dr Gavin Mudd, director of the Critical Minerals Intelligence Centre, discusses the findings and new methodology featured in the 2024 UK Criticality Assessment.
UK 2024 Criticality Assessment published
28/11/2024
The latest UK Criticality Assessment, produced by the UK Critical Minerals Intelligence Centre, shows that growing diversification brings an increasing vulnerability in terms of disruption to supply.
Brighid Ó Dochartaigh honoured with prestigious Geological Society award
27/11/2024
A recently retired BGS employee has been honoured for her contribution to the hydrogeological community.
How can Scotland re-establish its building stone industry?
14/11/2024
British Geological Survey research, commissioned by Historic Environment Scotland, reveals an opportunity to re-establish the Scottish building stone market in order to maintain the country’s historic buildings.
UK–Philippine partnership to help tackle the challenges of future water security in the Philippines
07/11/2024
New ‘hydrological hub’ to foster research and provide essential national water management datasets and tools.
Next stage of funding awarded for project on hydrogen storage potential in the East Midlands
17/10/2024
BGS will conduct essential studies on hydrogen behaviour in the subsurface to predict, measure and monitor underground hydrogen storage.