Geomicrobiology Laboratory

BGS Science Facilities – Fluid and Rock Processes Laboratory Cluster

The geomicrobiology research at BGS is led by Dr Simon Gregory and is carried out within the Fluid and Rock Processes Laboratory Cluster. Most of our work addresses issues relevant to decarbonisation and resource management, where we investigate microbiological processes associated with geological materials and how they impact the environment. Our particular interests lie in the positive or negative impact that microorganisms can have on subsurface industries.

The laboratory is well-equipped for a wide range of culture-based microbial techniques as well as molecular microbiological methods. We have considerable experience in constructing and running experiments designed to replicate the pressures and temperatures found at depth in the subsurface.

Our facilities

  • pressure vessels and pumps for running experiments at elevated pressures and temperatures
  • microaerophilic/anaerobic chamber for cultivation of oxygen sensitive microorganisms
  • FerMac 200 series modular bioreactor
  • PCR, qPCR and nanopore sequencing facilities
  • microplate reader used for growth and chemical assays
  • range of programmable incubators (-10 ºC to 70 ºC)

Our work

Understanding the effect microbial activity could have in and around a geological disposal facility (GDF) for radioactive waste is important to ensure safe disposal. We are particularly interested in the interactions between microorganisms, groundwater and components of engineered barrier materials such as bentonite and steel. There is evidence to show that certain types of microbial activity can increase metal corrosion and decrease the swelling capacity of bentonite, which could make them less effective barriers to movement of groundwater or radioactive waste. We have a long-term experimental programme that tries to understand the activity of microorganisms in a GDF and how this might affect barrier material.

Radioactive waste disposal project website: Microbiology In Nuclear Disposal

Our interest in carbon capture and storage relates to the response of microorganisms to carbon dioxide, both in storage reservoirs and as a tool for monitoring leakage at the surface. We have been involved in studying microbial responses to elevated carbon dioxide associated with natural carbon dioxide seeps and experimental injections in both terrestrial and marine environments. We are continuing this work at the GeoEnergy Test Bed.

Microbial activity in carbon dioxide injection wells may result in blockage through mineral precipitation or cause other unwanted geochemical reactions to take place in the reservoir. Current work focusses on understanding how impurities in the stored carbon dioxide affect microbial activity. Another area we work on is using microbes that precipitate carbonates to bioremediate existing hydrocarbon wells for carbon capture and storage. This biotechnological precipitation has applications in sealing fractures and repairing damage in many other contexts as well as CCS.

CCS project websites:

Microorganisms that consume methane respond rapidly to methane emissions. We are trying to understand the response of microbes that consume methane and other alkanes to determine whether they can be used to identify whether the methane is from a biological or geological sources. The organisms capable of consuming alkanes may also display behaviours that are beneficial to the bioremediation of a vast number of contaminants which we are beginning to explore.

Methanotrophs in soils project website: Turning Down the Gas: what is the potential for microbial mitigation of methane leakage from soils?

Methanotrophs in groundwater project website: SECURe

sampling near Grenoble
Sampling at La fontaine ardente du Gua, a natural methane vent near Grenoble. Source: BGS © UKRI.
fungal balls
Fungal cultures forming balls of crushed bauxite in bioleaching experiments. Source: BGS © UKRI.

Microorganisms can be used to extract a range of metals from ores and may provide more sustainable mining techniques. Much of our research is targeted at understanding how microorganism can be harnessed to extract and separate rare earth elements, initially from ion adsorption clays. We are expanding our biomining research to other ores and other critical metals.

Biomining project website: SoSRARE


Other research

We are increasingly involved in other areas of BGS and external research including detection and enumeration of pathogens in groundwater, microbiology of geothermal heating systems, methanogenesis and developing SEM based microbial imaging techniques.

Need more information?

Please contact Dr Simon Gregory or Dr Megan Barnett for more information.

You may also be interested in:

Geomicrobiology laboratory

Fluid and Rock Processes Laboratory Cluster

This cluster does research to identify, measure and quantify complex geological and environmental processes essential in the efficient utilisation of natural resources and underground spaces.

Show more

Hydrates and Ices Laboratory

The BGS Hydrate and Ices Laboratory is a specialised facility used to study the behaviour of gas hydrates within sediments.

Show more
BGS Hydrothermal lab

Hydrothermal Laboratory

This laboratory is used to study chemical reactions between fluids and rocks under conditions found in the top few kilometres of the Earth’s crust.

Show more
A piece of sandstone rock that has been sheard by pressure applied in a laboratory setting

Transport Properties and Fracture Physics Research Laboratories

Research in these laboratories focuses on understanding fluid (water, gas and solutes) movement and rock deformation in the subsurface.

Show more

Was this page helpful?

  • How can we make this section better?*

  • Please select a reason*

  • How can we make this section better?*