The geomicrobiology research at BGS is led by Dr Simon Gregory and is carried out within the Fluid and Rock Processes Laboratory Cluster. Most of our work addresses issues relevant to decarbonisation and resource management, where we investigate microbiological processes associated with geological materials and how they impact the environment. Our particular interests lie in the positive or negative impact that microorganisms can have on subsurface industries.

Techniques for looking at biofilms at pressure: sampling the biological flow apparatus (left) and Molecular DNA techniques: amplifying microbial DNA using the polymerase chain reaction (right). Source: BGS © UKRI.
The laboratory is well-equipped for a wide range of culture-based microbial techniques as well as molecular microbiological methods. We have considerable experience in constructing and running experiments designed to replicate the pressures and temperatures found at depth in the subsurface.
Our facilities
- pressure vessels and pumps for running experiments at elevated pressures and temperatures
- microaerophilic/anaerobic chamber for cultivation of oxygen sensitive microorganisms
- FerMac 200 series modular bioreactor
- PCR, qPCR and nanopore sequencing facilities
- microplate reader used for growth and chemical assays
- range of programmable incubators (-10 ºC to 70 ºC)
Our work
Understanding the effect microbial activity could have in and around a geological disposal facility (GDF) for radioactive waste is important to ensure safe disposal. We are particularly interested in the interactions between microorganisms, groundwater and components of engineered barrier materials such as bentonite and steel. There is evidence to show that certain types of microbial activity can increase metal corrosion and decrease the swelling capacity of bentonite, which could make them less effective barriers to movement of groundwater or radioactive waste. We have a long-term experimental programme that tries to understand the activity of microorganisms in a GDF and how this might affect barrier material.
Radioactive waste disposal project website: Microbiology In Nuclear Disposal
Our interest in carbon capture and storage relates to the response of microorganisms to carbon dioxide, both in storage reservoirs and as a tool for monitoring leakage at the surface. We have been involved in studying microbial responses to elevated carbon dioxide associated with natural carbon dioxide seeps and experimental injections in both terrestrial and marine environments. We are continuing this work at the GeoEnergy Test Bed.
Microbial activity in carbon dioxide injection wells may result in blockage through mineral precipitation or cause other unwanted geochemical reactions to take place in the reservoir. Current work focusses on understanding how impurities in the stored carbon dioxide affect microbial activity. Another area we work on is using microbes that precipitate carbonates to bioremediate existing hydrocarbon wells for carbon capture and storage. This biotechnological precipitation has applications in sealing fractures and repairing damage in many other contexts as well as CCS.
CCS project websites:
Microorganisms that consume methane respond rapidly to methane emissions. We are trying to understand the response of microbes that consume methane and other alkanes to determine whether they can be used to identify whether the methane is from a biological or geological sources. The organisms capable of consuming alkanes may also display behaviours that are beneficial to the bioremediation of a vast number of contaminants which we are beginning to explore.
Methanotrophs in soils project website: Turning Down the Gas: what is the potential for microbial mitigation of methane leakage from soils?
Methanotrophs in groundwater project website: SECURe


Microorganisms can be used to extract a range of metals from ores and may provide more sustainable mining techniques. Much of our research is targeted at understanding how microorganism can be harnessed to extract and separate rare earth elements, initially from ion adsorption clays. We are expanding our biomining research to other ores and other critical metals.
Biomining project website: SoSRARE
Other research
We are increasingly involved in other areas of BGS and external research including detection and enumeration of pathogens in groundwater, microbiology of geothermal heating systems, methanogenesis and developing SEM based microbial imaging techniques.
Need more information?
You may also be interested in:

Fluid and Rock Processes Laboratory Cluster
This cluster does research to identify, measure and quantify complex geological and environmental processes essential in the efficient utilisation of natural resources and underground spaces.

Hydrates and Ices Laboratory
The BGS Hydrate and Ices Laboratory is a specialised facility used to study the behaviour of gas hydrates within sediments.

Hydrothermal Laboratory
This laboratory is used to study chemical reactions between fluids and rocks under conditions found in the top few kilometres of the Earth’s crust.

Transport Properties and Fracture Physics Research Laboratories
Research in these laboratories focuses on understanding fluid (water, gas and solutes) movement and rock deformation in the subsurface.