Jeremy Everest

Dr Jeremy Everest

Glacial geologist
BGS Edinburgh
Contact

Jeremy Everest’s biography

  • 2021- ongoing: Expedition Project Manager IODP Exp. 377 Arctic Ocean Paleoceanography

  • 2020 – ongoing: International Ocean Discovery Programme ESO Expedition Project Manager

  • 2019 – ongoing: Expedition Project Manager IODP Exp 386 Japan Trench Paleoseismology

  • 2017 – ongoing: Expedition Project Manager IODP Exp 381 Corinth Active Rift Development
  • 2017 – 2020: Skills Leader for BGS Marine Geoscience

  • 2017 – ongoing: Expedition Project Manager IODP Exp 381 Corinth Active Rift Development

  • 2017 – ongoing: Skills Leader for BGS Marine Geoscience
  • 2007 – 2018: Project Leader of Glacier Monitoring BGS observatory at Virkisjökull
  • 2016 – 2016: Drilling Coordinator IODP Expedition 364 Chicxulub Impact Crater
  • 2010 – 2014: Project Leader of Great Glen Quaternary Data Capture
  • 2005 – 2017: Project Leader of BGS Iceland Training Course
  • 2008 – 2011: Project Leader of Modern Glacial Landscapes
  • 2003: PhD University of Edinburgh, Cairngorm Deglaciation (Scotland)
  • 1995: MA University of Edinburgh, Geography

Research interests

  • Monitoring impacts of climate change on Icelandic glaciers
  • Glacial geomorphology
  • Ice Sheet reconstruction
  • Antarctic Peninsula Ice Sheet, and environmental change
  • Terrestrial Cosmogenic Nuclide (TCN) dating

Current projects and collaboration

  • 2021- ongoing: Expedition Project Manager IODP Exp. 377 Arctic Ocean Paleoceanography
  • 2019 – ongoing: Expedition Project Manager IODP Exp 386 Japan Trench Paleoseismology
  • 2017 – ongoing: IODP Expedition 381, Corinth Active Rift Development. Expedition Project Manager
  • 2016 – 2020: PhD supervision of John Mackay (University of Birmingham)
  • 2012 – 2017: PhD supervision of Verity Flett (University of Dundee)

Publications

Stein, R., St. John, K., and Everest, J., 2021. Expedition 377 Scientific Prospectus: Arctic Ocean Paleoceanography (ArcOP). International Ocean Discovery Program. https://doi.org/10.14379/iodp.sp.377.2021

Mackay, Jonathan D.; Barrand, Nicholas E; Hannah, David M; Krause, Stefan; Jackson, Christopher R.; Everest, Jez; MacDonald, Alan M.; O Dochartaigh, Brighid E.. 2020 Proglacial groundwater storage dynamics under climate change and glacier retreat. Hydrological Processes. https://doi.org/10.1002/hyp.13961

O Dochartaigh, B E, MacDonald, A M, Black, A R, Everest, J, Wilson, P, Darling, G W, Jones, L, and Raines, M. 2019. Groundwater - meltwater interaction in proglacial aquifers. Hydrology and Earth System Sciences, 23. 4527-4539. https://doi.org/10.5194/hess-23-4527-2019

Mackay, J D, Barrand, N E, Hannah, D M, Krause, S, Jackson, C R, Everest, J, Aðalgeirsdóttir, G, and Black, A R. 2019. Future evolution and uncertainty of river flow regime change in a deglaciating river basin. Hydrology and Earth System Sciences, 23 (4). 1833-1865. https://doi.org/10.5194/hess-23-1833-2019

McNeill, L C, Shillington, D J, Carter, G DO, Everest, J D, Gawthorpe, R L, Miller, C, Phillips, M P, Collier, Richard E, Ll, Cvetkoska, A, De Gelder, G, Diz, P, Doan, M-L, Ford, M, Geraga, M, Gillespie, J, Hemelsdaël, R, Herrero-Bervera, E, Ismaiel, M, Janikian, L, Kouli, K, Le Ber, E, Li, S, Maffione, M, Mahoney, C, Machlus, M L, Michas, G, Nixon, C W, Oflaz, S A, Omale, A P, Panagiotopoulos, K, Pechlivanidou, S, Sauer, S, Seguin, J, Sergiou, S, Zakharova, Natalia V, and Green, S. 2019. High-resolution record reveals climate-driven environmental and sedimentary changes in an active rift. Scientific Reports, 9 (1), 3116. https://doi.org/10.1038/s41598-019-40022-w

Finlayson, A, Phillips, E, Benediktsson, Í Ö, Zoet, L K, Iverson, N R, and Everest, J. 2019. Subglacial drumlins and englacial fractures at the surge-type glacier, Múlajökull, Iceland. Earth Surface Processes and Landforms, 44 (1). 367-380. https://doi.org/10.1002/esp.4485

Mackay, J D, Barrand, N E, Hannah, D M, Krause, S, Jackson, C R, Everest, J, and Aðalgeirsdóttir, G. 2018. Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection. The Cryosphere, 12 (7). 2175-2210. https://doi.org/10.5194/tc-12-2175-2018

Phillips, E, Everest, J, Evans, D J A, Finlayson, A, Ewertowski, M, Guild, A, and Jones, L. 2017. Concentrated, ‘pulsed’ axial glacier flow: structural glaciological evidence from Kvíárjökull in SE Iceland. Earth Surface Processes and Landforms, 42 (13). 1901-1922. https://doi.org/10.1002/esp.4145

Krabbendam, M, Bradwell, T, Everest, J D, and Eyles, N. 2017. Joint-bounded crescentic scars formed by subglacial clast-bed contact forces: implications for bedrock failure beneath glaciers. Geomorphology, 290. 114-127. https://doi.org/10.1016/j.geomorph.2017.03.021

Flett, V, Maurice, L, Finlayson, A, Black, A R, MacDonald, A M, Everest, J, and Kirkbride, M P. 2017. Meltwater flow through a rapidly deglaciating glacier and foreland catchment system: Virkisjökull, SE Iceland. Hydrology Research, 48 (6). 1666-1681. https://doi.org/10.2166/nh.2017.205

Everest, J, Bradwell, T, Jones, L, and Hughes, L. 2017. The geomorphology of Svínafellsjökull and Virkisjökull-Falljökull glacier forelands, southeast Iceland. Journal of Maps, 13 (2). 936-945. https://doi.org/10.1080/17445647.2017.1407272

Flett, V, Maurice, L, Finlayson, A, Black, A R, MacDonald, A M, Everest, J, and Kirkbride, M P. 2017. Meltwater flow through a rapidly deglaciating glacier and foreland catchment system: Virkisjökull, SE Iceland. Hydrology Research Feb 2017, nh2017205; DOI: 10.2166/nh.2017.205

Phillips, E, Everest, J, Evans, D  J A, Finlayson, A, Ewertowski, M, Guild, A, and Jones, L. 2017. Concentrated, ‘pulsed’ axial glacier flow: structural glaciological evidence from Kvíárjökull in SE Iceland. Earth Surf. Process. Landforms, 42: 1901–1922. doi: 10.1002/esp.4145.

MacDonald, A M, Black, A R, Ó Dochartaigh, B É, Everest, J, Darling, W G, Flett, V, and Peach, D W. 2016. Using stable isotopes and continuous meltwater river monitoring to investigate the hydrology of a rapidly retreating Icelandic outlet glacier. Annals of Glaciology, 57(72), pp. 151–158. doi: 10.1017/aog.2016.22.

Kirkbride, M, Everest, J, Benn, D, Gheorghiu, D, and Dawson, A. 2014. Late-Holocene and Younger Dryas glaciers in the northern Cairngorm Mountains, Scotland. The Holocene, 24 (2). 141-148. 10.1177/0959683613516171

Phillips, E, Finlayson, A, Bradwell, T, Everest, J, and Jones, L. 2014. Structural evolution triggers a dynamic reduction in active glacier length during rapid retreat: Evidence from Falljökull, SE Iceland, J. Geophys. Res. Earth Surf., 119, 2194–2208, doi:10.1002/2014JF003165.

Bradwell, T, Sigurðsson, O, and Everest, J. 2013. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas, 42: 959–973. doi:10.1111/bor.12014

Bradwell, T, Sigurđsson, O, and Everest, J. 2013. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas, 42 (4). 959-973. 10.1111/bor.12014

Everest, J D, Bradwell, T, Stoker, M, and Dewey, S. 2013. New age constraints for the maximum extent of the last British-Irish Ice Sheet (NW sector). Journal of Quaternary Science, 28 (1). 2-7. 10.1002/jqs.2603

Johnson, J S, Everest, J, Leat, P T, Golledge, N, Rood, D H, and Stuart, F M. 2012. The deglacial history of NW Alexander Island, Antarctica, from surface exposure dating. Quaternary Research, 77 (2). 273-280. 10.1016/j.yqres.2011.11.012

Phillips, E, Everest, J, and Reeves, H. 2012. Micromorphological evidence for subglacial multiphase sedimentation and deformation during overpressurized fluid flow associated with hydrofracturing. Boreas, Article first published online: 24th May 2012. DOI: 10.1111/j.1502-3885.2012.00261.x

Skills

  • Expedition project management
  • Glacial geomorphology and geology
  • Field survey – Quaternary terrestrial and marine
  • 2015 – ongoing : UK CAA NQE Multi Rotor UAV Pilot (<20kg)- geological survey and videography

Was this page helpful?

  • How can we make this section better?*

  • Please select a reason*

  • How can we make this section better?*