New research highlights significant earthquake potential in Indonesia’s capital city
Research reveals that a fault cutting through the subsurface of Jakarta could generate a damaging earthquake of high magnitude.
04/11/2025 By BGS Press
The Jakarta Fault runs beneath the southern part of the capital city of Indonesia, Jakarta. Jakarta is one of the largest cities in the world, with a population exceeding 30 million in the metropolitan area. New research by BGS and Indonesian colleagues shows that this fault could generate a magnitude 6.5 earthquake, which would expose a large number of people as well as significantly important economic infrastructure to strong ground shaking.
Between 2019 and 2023, Indonesian scientists from the Institut Teknologi Bandung (ITB), National Research and Innovation Agency (BRIN) and the Geospatial Information Agency (BIG) collected ground movement data across the Jakarta Fault from a dense network of global navigation satellite systems (GNSS). These measurements revealed slow, millimetre-scale changes in ground movement occurring across the fault, which indicated energy accumulating that will need to be released, potentially in a future earthquake.
Geophysical modelling shows that ground movement is accruing on the fault at 3.2 mm per year, with the fault locked or ‘stuck’ down to at least 7.2 km. This accumulation has been happening for at least 210 years, which means that releasing it all now would result in a magnitude 6.5 earthquake.
While magnitude 6.5 earthquakes are not uncommon in Indonesia, they mostly occur under the ocean. The danger here is that the earthquake could occur in the middle of a densely built-up area like Jakarta, which means a much higher level of risk to life and infrastructure.
Dr Ekbal Hussain, remote sensing geoscientist at BGS and research co-leader.
The Jakarta Fault is a relatively newly recognised major tectonic fault on the Indonesian island of Java. It is a part of a broader fault system that cuts across most of Java, which, with a population of 157 million people, is the most densely populated island on Earth. Geophysical surveys conducted by BGS in the 1970s and 1980s, in collaboration with the Indonesian Geological Research and Development Center, helped identify this major tectonic structure for the first time, but its earthquake potential has remained unclear until now.

The ground movements across the Jakarta Fault were modelled to estimate the energy storage rate (slip rate) on the fault. Source: Gunawan et al., 2025.
This research forms part of strategic UK/Indonesia research partnerships on geological hazard solutions, as outlined in a recently published White Paper, UK/Indonesia partnerships for advancing geohazard science for disaster risk assessment in Indonesia. The paper, co-developed by key Indonesian and UK hazard experts, presents a strategic roadmap to significantly reducing the impacts of geological hazards in the country. Importantly, it highlights the strength of UK and Indonesian science partnerships for delivering the best disaster resilience science.
More information
Access the full paper: GNSS constraints on the Jakarta Fault, Indonesia: resolving slip rate and seismic hazard potential
Funding
This is work is funded by the UKRI National Capability Geoscience to tackle global environmental challenges programme. The BGS and Indonesian researchers involved in this study are continuing their engagement with local government to address the hazard challenges raised in this work.
Related news
New research shows artificial intelligence earthquake tools forecast aftershock risk in seconds
25/11/2025
Researchers from BGS and the universities of Edinburgh and Padua created the forecasting tools, which were trained on real earthquakes around the world.
BGS welcomes publication of the UK Critical Minerals Strategy
23/11/2025
A clear strategic vision for the UK is crucial to secure the country’s long-term critical mineral supply chains and drive forward the Government’s economic growth agenda.
New funding awarded for UK geological storage research
21/11/2025
A project that aims to investigate the UK’s subsurface resource to support net zero has been awarded funding and is due to begin its research.
UK braced for what could be the largest solar storm in over two decades
12/11/2025
Intense geomagnetic activity could disrupt technology such as communication systems, global positioning systems and satellite orbits.
First distributed acoustic sensing survey completed at UK Geoenergy Observatory
12/11/2025
New research at the Cheshire Observatory has shown the potential for mapping thermal changes in the subsurface using sound waves.
Latest BGS Geology 50K mapping data launched
06/11/2025
Some of our most widely used maps have received a major update, including the 1:50 000-scale map series that now includes enhanced coverage of Great Britain.
New research highlights significant earthquake potential in Indonesia’s capital city
04/11/2025
Research reveals that a fault cutting through the subsurface of Jakarta could generate a damaging earthquake of high magnitude.
World Cities Day: the geological story of our cities
31/10/2025
Understanding the rocks that underlie our towns and cities, the risks they can present and how they influence urban planning and redevelopment.
GSNI project wins multiple awards at RegioStars event
17/10/2025
The AGEO project enjoyed a double success at the RegioStars awards, hosted at the European Commission in Brussels.
Extended seabed geology map of the Bristol Channel published
07/10/2025
BGS has released significantly extended high-resolution maps that will support offshore green-energy initiatives in the area.
Dr Angela Lamb appointed as honorary professor by the University of Nottingham
02/10/2025
Dr Lamb will take up the position of honorary professor of environmental geochemistry, with a focus on collaborative research.
New report sets pathway to reduce the impacts of geohazards in one of the world’s most hazard-prone nations
30/09/2025
A new White Paper, co-developed by Indonesian and UK hazard experts, presents a strategic roadmap to significantly reduce the impacts of geological hazards in Indonesia.