A National Geoscience Framework for the 21st century

Dr Michael Lee
Director, Geology & Resources, BGS
In the beginning

- First maps linked to industrialisation & science
- BGS established in 1835 to provide a ‘geological baseline’ for the industrial revolution
 - Raw materials for industry & development (coal, iron ore, limestone, construction materials)
 - Knowledge of geology for canal, railway & tunnel construction
Continuous improvement

1835 - present

Primary geological survey at 6 inch (10k) scale

Detailed mapping of important resource areas (e.g. coal fields)

Systematic map coverage at 1 inch (50k)

Detailed descriptions of geology & resources (Memoirs)

First class understanding of geology, rock properties and resources
New ‘layers’ of information

Mid 20th century onwards

1st generation airborne geophysics
Magnetic only, analogue recording, 2km line spacing, 305m elevation

Regional gravity surveys
1 observation per 1-2 sq km

1st regional geochemical surveys
Stream sediments, 20 elements, mineral focused

Continental shelf
Offshore seismic, regional grav/mag, seabed geology

Improved framework for resource exploration & tectonics
Analogue to digital – late 20th century

Digitise analogue geophysical data
Digital maps, data and models

New generation of high resolution airborne geophysical surveys
HiRES-1 (mag & radiometric only)

Enhanced geochemical surveys
Sediments/water/soil, 50 elements, environment focus, digital data

Digitised 2D geology
Start digitising legacy data

Continental shelf
Commercial 3D seismic available

‘Geoscience Framework’ to meet needs of late 20th century
A changing world

Pressures on land & resources continue to grow

Identify and tackle current and legacy pollution – brown field development

Living with climate change

Protect groundwater resources, habitats and biodiversity

Development with minimal impact on environment

Need renewable and low-carbon energy

EU & national environmental legislation & directives (water, soils, habitats)

Environmental impact assessments & regional strategies

Industry & urbanisation

Agriculture

Waste management

Leisure

Water & habitats

Resources

Energy

Rising sea levels

Changing weather patterns
Meeting the challenges

- Time-dependent (4D) natural & human-induced processes operate within a 3D structural framework.
- Every challenge requires more detailed knowledge of
 - 3D geological structure (digital 3D models as well as maps)
 - Geological & environmental properties of the surface & subsurface
- Especially in the shallow ‘zone of human influence’

A very ‘lived-in’ environment
60 million people & 300 years exploitation of shallow subsurface

Shallow subsurface preserves a record of climate change and human environmental impact

© NERC All rights reserved
The digital information gap

- 2D Superficial geology
 - Incomplete geochemistry
 - Boreholes
- 2D Bedrock geology
 - Local shallow geophysics
- Deep regional geophysics (grav/mag) & seismic (in major basins)
- Digital 3D geology
 - Properties of the shallow subsurface
What’s needed?

- A ‘next generation’ Geoscience Framework to underpin
 - Sustainable management of the environment
 - Responsible economic development
 - Compliance with regulations and directives
 - Research into natural & human-induced processes (Earth system)

Part of the wider ‘Spatial Data Architecture’
A geoscience framework for the 21st century

- 3D geology – standardised lithostratigraphic framework
- Fully digital workflow
 - Field Map Model Delivery
- Geological & environmental properties of the 3D Earth
 - Physical & engineering properties of rocks
 - Natural & anthropogenic chemicals in the environment
 - High resolution geophysical imaging of the shallow subsurface
- National coverage to a consistent standard
Geological Framework - 2D to 3D

DiGMap

Surface (2D) geology

Attributed 3D models at 10k, 50k, 250k & 1M

LithoFrame
Different resolutions for different applications

LithoFrame10 – depth 100-200m – Beds & superficial deposits
National Model

Major geological units and faults

Regional Model

Eastern England

Permo-Triassic aquifer model for the Environment Agency
Detailed Model

City of York

Site Specific Model

Southwell, Nottinghamshire

Urban planning & archaeology

Soil & weathering systems

© NERC All rights reserved
A geoscience framework for the 21st century

- 3D geology – standardised lithostratigraphic framework
- Fully digital workflow
 - Field Map Model Delivery
- Geological & environmental properties of the 3D Earth
 - Physical & engineering properties of rocks
 - Natural & anthropogenic chemicals in the environment
 - High resolution geophysical imaging of the shallow subsurface
- National coverage to a consistent standard
Digital field mapping - *Culture change*
Delivering the ‘3D Geological Map’

Subsurface viewer – released 2005
Immersive 3D systems

GeoVisionary
A geoscience framework for the 21st century

• 3D geology – standardised lithostratigraphic framework

• Fully digital workflow
 - Field Map Model Delivery

• Geological & environmental properties of the 3D Earth
 - Physical & engineering properties of rocks
 - Natural & anthropogenic chemicals in the environment
 - High resolution geophysical imaging of the shallow subsurface

• National coverage to a consistent standard
Natural & anthropogenic chemicals in the environment

- Natural geochemical variations
- Impact of human activity
 - Urbanisation, industry & agriculture
- Key data resource for
 - Managing the environment
 - Planning & development
 - Mineral exploration
 - Agriculture: trace element effects on crop health and yields
 - Rivers: trace elements & pollutants harmful to aquatic life and plants
 - Human & animal health, epidemiology
 - Geology & research

High resolution regional coverage
Stream sediment, stream water & soils
1 sample per 2 km². ~50 elements
High resolution geophysical imaging of the shallow subsurface

• Radiometric sensors
 - measure near-surface natural (geological) & man-made radioactivity

• Electro-magnetic (EM) sensors
 - measure electrical conductivity of the shallow subsurface (to around 100m)

• Magnetic sensors
 - measure changes in the Earth’s magnetic field related to subsurface structure (variations in rock magnetism)

High resolution airborne surveys
200m line spacing. 56m elevation
Thee complementary data sets
Radiometric data

Natural & man-made radioactivity

- Baseline levels of natural radioactivity
 - background for future contamination & epidemiological studies
 - mapping near surface geology, soils & peat
- Distribution of 137Cs (Cesium)
 - e.g. Chernobyl fallout
- Radioactive industrial waste
- Areas prone to high levels of radon
- Data for mineral exploration

© NERC All rights reserved
Electro-magnetic (EM) data

Near-surface electrical conductivity

• High electrical conductivity (in top 100m) relating to leakage from
 - land-fills, waste dumps & mine waste tips
 - industrial pollution

• Metalliferous mineral deposits

• Ground conductivity
 - e.g. to site masts and electrical infrastructure

• Concealed geological structure
Airborne magnetic data

Variations in rock magnetic properties

• Concealed geology (shallow & deep)
 - Especially in volcanic & metamorphic terrains (e.g. Scotland & N Ireland)
 - But also in ‘non-magnetic’ sedimentary basins in all parts of the UK

• Structural controls on mineralisation
 - Targets for follow-up exploration

• Environmental applications
 - Structural controls on groundwater movement
 - Identification of ‘lost’ and illegal land-fills containing metal waste

Modern high resolution data provide much greater definition of concealed structure

Existing data - 2km line spacing dating from 1950s & 60s
Role of geochemical & geophysical data sets in managing the environment

- Defining natural & human-induced conditions in the near surface
- Provide multiple integrated data sets for
 - Defining environmental & geological baselines
 - Identifying sources of natural and anthropogenic contamination
 - Understanding movement of pollutants through the subsurface

- Powerful evidence base to underpin
 - Monitoring and protecting the environment (e.g. groundwater, habitats, biodiversity, human & animal health)
 - Managing sustainable development of land & natural resources
 - Developing environmental strategies and remediation plans
 - Compliance with environmental legislation
 - Targeting site investigations
Progress towards the ‘next generation’ Geoscience Framework at BGS

- Complete ‘baseline’ 2D geological coverage
- Fully implement digital field data capture digital workflow
- Increasingly deliver 3D geology as standard product
- New 3D visualisation
- Move to ‘issue-driven’ responsive revision of 2D/3D geology

Similar approach offshore
TELLUS

‘Understanding Underground’

Two new and comprehensive surveys of Northern Ireland

Low-level airborne geophysical survey

Geochemical surveys of soils & streams

Tellus launched in 2004
Surveys completed 2006

© NERC All rights reserved
UNDERSTAND and CONTRIBUTE to the sustainable development and management of our natural resources

MEASURE and ASSESS the environmental well-being of Northern Ireland, using modern mapping techniques