The sand and gravel resources of the country east of Colchester, Essex
Description of 1:25 000 resource sheet TM 02

J. D. Ambrose, BSc

London Her Majesty's Stationery Office 1975
The Institute of Geological Sciences was formed by the incorporation of the Geological Survey of Great Britain and the Museum of Practical Geology with Overseas Geological Surveys and is a constituent body of the Natural Environment Research Council.

© Crown copyright 1975

It is recommended that reference to this report be made in the following form:

ISBN 0 11 880745 5
National resources of many industrial minerals may seem so large that stocktaking appears unnecessary, but the demand for minerals and for land for all purposes is intensifying and it has become increasingly clear in recent years that regional assessments of the resources of these minerals should be undertaken. The publication of information about the quantity and quality of deposits over large areas is intended to provide a comprehensive factual background against which planning decisions can be made.

Sand and gravel, considered together as naturally occurring aggregate, was selected as the bulk mineral demanding the most urgent attention, initially in the south-east of England, where about half the national output is won and very few sources of alternative aggregates are available. Following a short feasibility project, initiated in 1966 by the Ministry of Land and Natural Resources, the Mineral Assessment Unit began systematic surveys in 1968. The work is now being financed by the Department of the Environment and is being undertaken with the cooperation of the Sand and Gravel Association of Great Britain.

This Report describes the resources of sand and gravel of 96.4 km² of country east of Colchester, shown on the accompanying 1:25 000 resource map TM 02. The survey was conducted by the late Mr J. D. Ambrose, assisted by Mr N. E. Bradbury as field officer who supervised the drilling and sampling programme and by Mr G. M. Bladon who helped in the preparation of data for this publication. The work is based on geological surveys at the one-inch scale by W. H. Dalton and W. Whitaker, published in 1882 and 1883, amended in the light of resource survey results and of additional mapping by the author.

Mr J. W. Gardner, CBE (Land Agent) has been responsible for negotiating access to land for drilling. The ready cooperation of land owners and tenants in this work is gratefully acknowledged.

Kingsley Dunham
Director

Institute of Geological Sciences
Exhibition Road
South Kensington
London SW7 2DE
1 February 1975

Any enquiries concerning this report may be addressed to Head, Mineral Assessment Unit, Institute of Geological Sciences, Exhibition Road, London SW7 2DE
CONTENTS

INTRODUCTION

DESCRIPTION OF SHEET TM 02

General
Topography
Geology
Composition of the Sand and Gravel
The Map
Results
Notes on the Resource Blocks

APPENDIX A: FIELD PROCEDURE

APPENDIX B: STATISTICAL PROCEDURE

APPENDIX C: CLASSIFICATION AND DESCRIPTION OF SAND AND GRAVEL

APPENDIX D: EXPLANATION OF THE BOREHOLE RECORDS

APPENDIX E: BOREHOLES USED IN THE ASSESSMENT OF RESOURCES

APPENDIX F: MINERAL ASSESSMENT UNIT BOREHOLE RECORDS

APPENDIX G: LIST OF WORKINGS

APPENDIX H: CONVERSION TABLE - METRES TO FEET

REFERENCES

ILLUSTRATIONS

Fig. 1. Sketch map showing the location of sheet TM 02 and the position of the resource block boundaries

Fig. 2. Contour map of the upper surface of the London Clay

Fig. 3. Grading characteristics of the Glacial Sand and Gravel, based on the mean grading results from 77 assessment boreholes

Fig. 4. Particle size distribution for the assessed thickness of mineral in resource blocks A to G

Fig. 5. Sketch-section across parts of resource blocks C and G

Fig. 6. Example of resource block assessment: calculation and results

Fig. 7. Example of resource block assessment: map of fictitious block

Fig. 8. Diagram showing the descriptive categories used in the classification of sand and gravel

Map. The Sand and Gravel resources of sheet TM 02, the country east of Colchester, Essex

TABLES

Table 1. Geological classification

Table 2. The sand and gravel resources of sheet TM 02

Table 3. Classification of gravel, sand and fines

Table 4. List of workings on sheet TM 02, with their locations
Summary

The geological maps of the Institute of Geological Sciences, pre-existing borehole information, and 82 boreholes drilled for the Mineral Assessment Unit, form the basis of the assessment of sand and gravel resources of the country east of Colchester, Essex.

All deposits in the area which might be potentially workable for sand and gravel have been investigated and a simple statistical method has been used to estimate the volume. The reliability of the volume estimates is given at the symmetrical 95 per cent probability level.

The 1:25 000 map is divided into seven resource blocks, containing between 8.4 and 12.2 km\(^2\) of sand and gravel. For each block the geology of the deposits is described and the mineral-bearing area, the mean thicknesses of overburden and mineral and the mean gradings are stated. Detailed borehole data are also given. The geology, the position of the boreholes and the outlines of the resource blocks are shown on the accompanying map TM 02.

Sommaire

Les sources des renseignements qui constituent la base de l'évaluation des ressources en sable et en gravier dans la région à l'est de Colchester, Essex, comprennent les cartes géologiques de l'Institute of Geological Sciences, des données obtenues de trous de sonde déjà en existence et 82 trous de sonde forés pour le Mineral Assessment Unit.

Tous les dépôts dans la région qui pourraient être exploités pour le sable et le gravier ont été étudiés et on s'est servi d'une méthode statistique simple pour en évaluer le volume. Les évaluations de volume ont été tenues d'être à 95 pour cent exactes.

La carte 1:25 000 est divisée en sept blocs de ressources avec d'entre 8.4 et 12.2 km\(^2\) de sable et de gravier. Pour chaque bloc on décrit la géologie des dépôts et on donne l'étendue du terrain minéralisé, l'épaisseur moyenne de recouvrement et de minéral et les triages moyens. Des données détaillées des trous de sonde aussi présentées. La géologie, la situation des trous de sonde et les profils des blocs de ressources sont montrées sur la carte TM 02.

Zusammenfassung

Alle Ablagerungen im Gebiet, die möglich bearbeitbar für Sand und Schotter sind, wurden untersucht, und eine einfache statistische Methode wurde benutzt, um den Volumen zu schätzen. Man gibt die Zuverlässigkeit der Volumenschätzungen mit symmetrischen 95 Prozent Vertrauenswerten.

Man teilt die 1:25 000 Karte in 7 Mittelsblöcke, die zwischen 8.4 und 12.2 km\(^2\) von Sand und Schotter umfassen. Für jeden Block beschreibt man die Geologie der Ablagerungen, und das mineralhaltige Gebiet, die mittleren Dicken von Überlastung und Mineral und die mittleren Klassifizierungen werden erklärt. Ausführliche Bohrlocherdaten werden auch gegeben. Die Geologie die Lage der Bohrlöcher und die Skizzen der Mittelsblöcke werden auf der Begleitkarte gezeigt.
The sand and gravel resources of the country east of Colchester, Essex

Description of 1:25,000 resource sheet TM 02

J. D. Ambrose, BSc

Introduction

The survey is concerned with the estimation of resources, which include deposits that are not currently exploitable but have a foreseeable use, rather than reserves, which can only be assessed in the light of current, locally prevailing, economic considerations. Clearly, both the economic and the social factors used to decide whether a deposit may be workable in the future cannot be predicted; they are likely to change with time. Deposits not currently economically workable may be exploited as demand increases, as higher grade or alternative materials become scarce, or as improved processing techniques are applied to them. The improved knowledge of the main physical properties of the resource and their variability which this survey seeks to provide, will add significantly to the factual background against which planning policies can be decided (Archer, 1969; Thurrell, 1971).

The survey provides information at the 'indicated' level "for which tonnage and grade are computed partly from specific measurements, samples or production data and partly from projection for a reasonable distance on geological evidence. The sites available for inspection, measurement, and sampling are too widely spaced to permit the mineral bodies to be outlined completely or the grade established throughout" (Anon., 1948, p. 15).

It follows that the whereabouts of reserves must still be established and their size and quality proved by the customary detailed exploration and evaluation undertaken by the industry. However, the information provided by this survey should assist in the selection of the best targets for such further work.

The following arbitrary physical criteria have been adopted:

a. The deposit should average at least 1 m in thickness.
b. The ratio of overburden to sand and gravel should be no more than 3:1.
c. The proportion of fines (particles passing the No. 200 mesh BS sieve, about 1/16 mm) should not exceed 40 per cent.
d. The deposit must lie within 25 m of the surface, this being taken as the likely maximum working depth under most circumstances. It follows from the second criterion that boreholes are drilled no deeper than 18 m if no sand and gravel has been proved.

If a deposit of sand and gravel broadly meets these criteria, it is regarded as 'potentially workable' and is described and assessed as 'mineral' in this report. As the assessment is at the indicated level, parts of such a deposit may not satisfy all the criteria.

For the particular needs of assessing sand and gravel resources, a grain-size classification based on the geometric scale 1/16 mm, 1 mm, 4 mm, 16 mm has been adopted. The boundaries between fines (that is, the clay and silt fractions) and sand, and between sand and gravel grade material, are placed at 1/16 mm and 4 mm respectively (see Appendix C).

The volume and other characteristics are assessed within resource blocks, each of which, ideally, contains approximately 10 km² of sand and gravel. No account is taken of any factors, for example, roads, villages and high agricultural or landscape value, which might stand in the way of sand and gravel being exploited, although towns are excluded. The estimated total volume therefore bears no simple relationship to the amount that could be extracted in practice.

It must be emphasised that the assessment applies to the resource block as a whole. Valid conclusions cannot be drawn about the mineral in parts of a block, except in the immediate vicinity of the actual sample points.

a The late J. D. Ambrose carried out the work described in this Report at the Institute of Geological Sciences, 199 Knightsbridge, London SW7 1DZ.
Fig. 1. Sketch map showing the location of sheet TM 02 and the position of the resource block boundaries.
Description of Sheet TM 02

GENERAL
The area covered by this report is in north-east Essex, immediately east of the town of Colchester. It is mainly agricultural and is well served by road and rail communications joining London with the important cross-channel port of Harwich, with the popular holiday area around Clacton and Frinton and with east coast ports farther north in Norfolk and Suffolk.

The urban area of Colchester, which covers about 3.6 km² in the extreme west, is the only part of this 1:25 000 sheet excluded from the assessment. The remaining 96.4 km² has been divided into seven resource blocks.

TOPOGRAPHY
A gently sloping plateau falls from over 150 ft (45.7 m) in the north-west to below 100 ft (30.5 m) in the south-east. It is dissected by the River Colne flowing south-eastwards from Colchester, its lowest bridging-point, to Wivenhoe and beyond, and by its tributaries including Salary Brook and Tenpenny Brook on the left bank and Birch Brook and the Roman River on the right bank.

GEOLOGY
The geological classification given in Table 1 is a slightly amended version of that adopted for the original survey (Dalton, 1880, p. 1; Whitaker, 1885, p. 3).

Table 1. Geological classification.

<table>
<thead>
<tr>
<th>Recent and Pleistocene</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Brick earth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Terrace Deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Channel-fill Deposits</td>
<td>(proved only in borehole SE 1)</td>
<td></td>
</tr>
<tr>
<td>Loam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red Crag (proved only in boreholes)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eocene
| London Clay | | |
| Woolwich and Reading Beds | (proved only in Thanet Beds boreholes) | |

Cretaceous
| Upper Chalk (proved only in boreholes) | | |

London Clay
This constitutes the bedrock over the whole of the sheet and outcrops in the valleys of the River Colne and its tributaries. When fresh, the clay is stiff, bluish-grey, but the uppermost few feet are almost always weathered to a softer, streaky, brown clay in which more than a quarter of the assessment boreholes were stopped.

Borehole evidence suggests that the surface of the London Clay falls from over 150 ft (45.7 m) above OD in the north-west to less than 60 ft (18.3 m) above OD in the south-east (Fig. 2).

However, the surface is modified by an irregular series of depressions, the most conspicuous of which is elongated along an axis which coincides roughly with the present course of the River Colne. Within this depression the London Clay surface is at 5 ft (1.5 m) below OD, its lowest recorded level, in borehole SW 4. There are shallower depressions near Little Bromley and Arlesford.

Red Crag
Although the Red Crag is extensively exposed in Suffolk (Allender and Hollyer, 1972; 1973; Hollyer, 1974), it has not been found at the surface or assessed in this area. It has been recorded only at Little Bromley where assessment borehole NE 20 proved 18 ft (5.5 m) of grey, mainly medium grained sand, with a high proportion of comminuted shells, immediately overlying the London Clay (see notes on Block C). This shelly sand has been preserved in a hollow in the London Clay surface.

Glacial Sand and Gravel
The Glacial Sand and Gravel constitutes part of an extensive tract of outwash material which covers much of Essex, other parts of which have been assessed on adjacent 1:25 000 sheets (Ambrose, 1973a; 1973b; 1974; Eaton, 1973; Haggard, 1972).

The deposit forms a more or less continuous spread, normally between 15 ft (4.6 m) and 20 ft (6.1 m) in thickness, and consists of sands containing variable amounts of mainly flint and quartz gravel and rare interbedded thin clay seams. The sands often become increasingly 'clayey' (see Appendix C) upwards and may pass gradually into the Loam, beneath which they are normally concealed. This cover is absent in the main river valleys and south-west of the River Colne, although in the latter area the uppermost 10 ft (3.0 m) or so of the Glacial Sand and Gravel is 'very clayey', perhaps due to contamination from a former cover of loam.

Loam
This deposit normally rests on the Glacial Sand and Gravel, although in places it is more extensive and lies directly on London Clay. It is very variable in composition and is up to
Fig. 2. Contour map of the upper surface of the London Clay
22 ft (6.7 m) in thickness. It is predominantly brown, sandy clay or clay, containing some gravel and silt.

It is probably allied in origin to the extensive sheet of Chalky Boulder Clay to the north and west of this area, which was the product of an ice sheet that extended over much, if not all, of this district.

River Terrace Deposits

These deposits (recorded as 'Gravel and Sand' on the Old Series geological maps) are present in the Colne Valley at a level close to that of the present Alluvium. Two small patches, together amounting to less than 0.5 km², occur near Colchester and a third, smaller patch [038 216] of less than 0.25 km² occurs under the southern end of Wivenhoe. They are of too limited extent to be assessed within the terms of this survey.

River Brickearth

River Brickearth is restricted to a small outcrop north of the railway at Colchester [009 265]; 4 ft (1.2 m) of brown, silty clay in borehole SE 12 [078 230] may be River Brickearth.

Alluvium

Alluvium occurs mainly in the Colne Valley and as small, sinuous deposits in some of the tributary valleys. It was recorded in only one assessment borehole, SW 4 [022 243], in which 14 ft (4.3 m) of brown, silty clay overlies 3 ft (0.9 m) of 'very clayey' gravel which rests on London Clay. As the overburden to sand and gravel ratio exceeds 3 to 1, the deposit is not considered to be potentially workable and no assessment is offered.

COMPOSITION OF THE SAND AND GRAVEL

The weighted mean grading of the assessed mineral (all Glacial Sand and Gravel) is fines 5 per cent, sand 61 per cent, gravel 34 per cent. The blocks show the following variations: fines 3 to 7 per cent, sand 53 to 70 per cent, gravel 24 to 42 per cent. The mean grading at 77 borehole sites proving Glacial Sand and Gravel is shown graphically on Fig. 3. In nine boreholes that prove mineral, the Glacial Sand and Gravel is classified as 'clayey', that is, more than 10 per cent but less than 20 per cent of material is below 1/16 mm in size. The upper part of the Glacial Sand and Gravel in over a third of the boreholes contains more than 40 per cent fines and consequently is not considered to be mineral. Clay seams, commonly gravelly, are present but only when they exceed 0.9 m (3.0 ft) in thickness have they been used to separate the mineral horizons, for example, in NE 6. In NE 5 the whole of the Glacial Sand and Gravel contains too high a proportion of fines to be classified as mineral.

The sand fraction of the mineral, mainly quartz with subsidiary flint, is predominantly medium grained.

The gravel fraction normally contains both fine and coarse grades with the former slightly predominant. The most common constituents are quartz and flint; apart from quartzite other rock types, for example, jasper and limestone, are rare. The pebbles are commonly subrounded to subangular, sometimes rounded, but rarely angular. Cobble-size material is uncommon.

Lateral trends in size distribution are difficult to distinguish. However Fig. 3 shows that except in borehole SW 3 gravel occurs along the eastern sides of the major river valleys and coincides generally with an increase in gradient of the buried London Clay surface (Fig. 2). The percentage of gravel proved in the boreholes appears to decrease towards the north-west; borehole NW 56 contains only 3 per cent and is classified as sand.

THE MAP

The sand and gravel resource map is folded into the pocket at the end of this report. The base map is the Ordnance Survey 1:25 000 Outline Edition in grey, on which the topography is shown by contours in green, the geological data in black and the mineral resource information in shades of red.

Geological Data

The geological boundary lines, symbols etc. shown are taken from the geological map Old Series Quarter Sheets 48 NW and SW of this area, which was surveyed at the one-inch scale by W. H. Dalton and W. Whitaker and published in 1882 and 1883. Minor corrections resulting from the sand and gravel survey have been incorporated. Borehole data, which includes the stratigraphic relations and mean particle size distribution of the sand and gravel samples collected during the assessment survey, is also shown.

The geological boundaries show the best interpretation of the information available at the time of survey. However, it is inevitable, particularly with glacial deposits which change rapidly vertically and laterally, that local irregularities or discrepancies will be revealed by some boreholes (for example, at boreholes NW 54 and SE 1). These are taken into account in the assessment of resources (see below and Appendix B).

Mineral Resource Information

The mineral-bearing ground is subdivided
Fig. 3. Grading characteristics of the Glacial Sand and Gravel, based on the mean grading results from 77 assessment boreholes.
<table>
<thead>
<tr>
<th>BLOCK</th>
<th>AREA</th>
<th>VOLUME OF MINERAL</th>
<th>MEAN THICKNESS</th>
<th>MEAN GRADING PERCENTAGES</th>
<th>GRAVEL</th>
<th>SAND</th>
<th>FINES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km²</td>
<td>m³ million</td>
<td>m ft</td>
<td>%</td>
<td>+1/16 mm</td>
<td>-1/16 mm</td>
<td>+Vol million m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>km²</td>
<td>m ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>16.8</td>
<td>8.6</td>
<td>3.3</td>
<td>11</td>
<td>12</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td>B</td>
<td>15.0</td>
<td>12.2</td>
<td>2.5</td>
<td>8</td>
<td>17</td>
<td>63</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>11.8</td>
<td>11.3</td>
<td>2.5</td>
<td>8</td>
<td>6.0</td>
<td>19.5</td>
<td>42</td>
</tr>
<tr>
<td>D</td>
<td>12.6</td>
<td>10.0</td>
<td>4.9</td>
<td>16</td>
<td>6.8</td>
<td>4.0</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>13.1</td>
<td>8.4</td>
<td>3.0</td>
<td>10</td>
<td>6.8</td>
<td>4.0</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>12.3</td>
<td>8.7</td>
<td>1.3</td>
<td>4.5</td>
<td>5.5</td>
<td>4.8</td>
<td>40</td>
</tr>
<tr>
<td>G</td>
<td>14.8</td>
<td>10.4</td>
<td>1.7</td>
<td>5.5</td>
<td>4.4</td>
<td>4.4</td>
<td>40</td>
</tr>
<tr>
<td>TOTAL</td>
<td>96.4</td>
<td>69.6</td>
<td>3.6</td>
<td>59.6</td>
<td>14.5</td>
<td>14.5</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Notes:
- The sand and gravel resources of sheet TM 02 are based on initial calculations on which calculations are not assessed.
into resource blocks (see Appendix A). Within a resource block the mineral is subdivided into areas where it is 'exposed' and areas where it is present in continuous (or almost continuous) or discontinuous deposits beneath overburden. The mineral is identified as 'exposed' where the overburden, commonly consisting only of soil and subsoil, averages less than 1.0 m (3.3 ft) in thickness. Beneath overburden the mineral may be continuous (or almost continuous) or discontinuous. The recognition of these categories is dependent upon the importance attached to the proportion of barren boreholes which did not find potentially workable sand and gravel and the location within a likely zone of occurrence rather than to the mapped geological boundary lines. The whole of this area is considered as mineral, although it may include small areas where sand and gravel is not present or is not potentially workable. Inferred boundaries have been inserted where it is not present or is not potentially workable. Such boundaries (for which a distinctive symbol is used) are drawn primarily to convey an approximate location within a likely zone of occurrence rather than to represent the breadth of the zone, its size being limited only by cartographic considerations. For the purpose of measuring areas the centre-line of the symbol is used.

RESULTS

The statistical results are summarised in Table 2. Fuller grading particulars are shown in Fig. 4.

Accuracy of Results

For the seven resource blocks the accuracy of the results at the symmetrical 95 per cent probability level varies between 20 per cent and 41 per cent (that is, it is probable that 19 times out of 20 the true volumes present lie within these limits). However, the true values are more likely to be nearer the figures estimated than the limits. Moreover, it is probable that in each block roughly the same percentage limits would apply for the estimate of volume of a very much smaller parcel of ground (say, 200 acres) containing similar sand and gravel deposits if the results from the same number of sample points (as provided by, say, ten boreholes) were used in the calculation. Thus, if closer limits are needed for the quotation of reserves of part of a block, it can be expected that data from more than ten sample points will be required, even if the area is quite small. This point can be illustrated by considering the whole of the potenially workable sand and gravel on this sheet. The volume of sand and gravel (354 million m3) can be estimated to limits of ± 12 per cent at the 95 per cent probability level, by a calculation based on the data from 87 sample points spread across the seven resource blocks.

However, it must be emphasised that the quoted volume of sand and gravel has no simple relationship with the amount that could be extracted in practice, as no allowance has been made in the calculation for any restraints (such as existing buildings and roads) on the use of the land for mineral working.

NOTES ON THE RESOURCE BLOCKS

Block A

The Glacial Sand and Gravel in this block outcrops mainly on the valley sides. Its junction with the underlying London Clay is concealed in places by Loam.

The computation of resources is based on 12 assessment boreholes and one site investigation record. Two boreholes did not prove mineral: in borehole NW 48 5 (1.5 m) of clay with gravel has been tentatively identified as a locally clayey development of Glacial Sand and Gravel, but in NW 54 Glacial Sand and Gravel is absent.

The mineral, of mean thickness 12 ft (3.7 m), is overlain by overburden with a mean thickness of 11 ft (3.3 m). The assessed mineral thickness varies from 7 ft (2.1 m) in NW 50 to 27 ft (8.2 m) in NW 55. The overburden ranges in thickness from 7 ft (2.1 m) in NW 56 to 15 ft (4.6 m) in NW 60. It is normally Loam, but the upper part of the Glacial Sand and Gravel has also been classified as overburden where it is sufficiently contaminated by clay and silt as it passes, often gradually, upwards into the Loam. In this block, the thickness of this contaminated ('dirty') sand and gravel rarely exceeds 5 ft (1.5 m).

The mean grading of the mineral in the block
Fig. 4. Particle size distribution for the assessed thickness of mineral in resource blocks A to G
as a whole is fines 6 per cent, sand 70 per cent and gravel 24 per cent. Most is classified as pebbly sand, but it is significantly more gravelly in boreholes NW 57 and NW 58. Although individual samples are often recorded as 'clayey', the mean fines content is rarely more than 10 per cent in any borehole.

The volume of mineral in this block is estimated to be 32 million m3 ± 37 per cent. All limits quoted in this report are calculated at the symmetrical 95 per cent probability level.

Block B

Glacial Sand and Gravel outcrops on the valley sides in the north-west of this block, near Ardleigh, and in a thin strip running south-eastwards from Ardleigh Park [057 274] to near Elmstead [069 262]. Loam rests directly on the London Clay, which floors most of the valleys, thus concealing the base of the Glacial Sand and Gravel on the east side of the valley of Salary Brook. In such cases the extent of mineral beneath cover has been inferred.

Twelve assessment boreholes and two Hydrogeological Department records form the basis of the calculation of resources. Mineral is absent only in borehole NE 5 where 7 ft (2.1 m) of Glacial Sand and Gravel has been classified as waste because the fines exceed 40 per cent.

The thickness of mineral recorded in the assessment boreholes ranges from 3 ft (0.9 m) in NE 6 to 26 ft (7.9 m) in NW 65, with a mean of 17 ft (5.2 m), and of overburden from 5 ft (1.5 m) in NW 65 and NE 1 to 19 ft (5.8 m) in NW 61, with a mean of 8 ft (2.5 m). The overburden normally consists of Loam, although in borehole NW 59 the upper 10 ft (3.0 m) of the Glacial Sand and Gravel are also included.

The mean grading for the block as a whole is fines 5 per cent, sand 61 per cent and gravel 34 per cent but there are wide variations between boreholes. The mineral in boreholes NW 59 and NW 65 contains 57 and 50 per cent respectively of gravel, in contrast with 7 per cent in borehole NW 61, the balance of 93 per cent being entirely sand, no fines being recorded. Within the sand and gravel, fines rarely exceed 10 per cent. Separate bands of waste are sometimes present, for example, the bottom 4 ft (1.2 m) of Glacial Sand and Gravel in borehole NE 6, and the 7 ft (2.2 m) of silt and clayey silt which divides the mineral in borehole NE 4.

The calculated volume of mineral in this block is 63 million m3 ± 30 per cent.

Block C

Most of this block is mantled by Loam, but the underlying Glacial Sand and Gravel and London Clay reach the surface in the south near Great Bromley.

Information from 12 assessment boreholes and one Hydrogeological Department record has been used to evaluate the resources. Mineral is recorded in the Glacial Sand and Gravel in all the boreholes and in the Red Crag in borehole NE 20. The 18 ft (5.5 m) of Crag beneath Glacial Sand and Gravel consists of greyish, mainly medium grained quartz sand mixed with comminuted shells, mainly of bivalves. In common with the deposit in adjacent areas it is regarded as potentially workable (Allender and Hollyer, 1972; 1973; Hollyer, 1974) although no assessment has been attempted as its extent is unknown (see Geology Section).

The Glacial Sand and Gravel varies in thickness from 14 ft (4.3 m) to 32 ft (9.8 m), with a mean of 19.5 ft (6.0 m). No consistent trends in thickness can be distinguished, but two boreholes in the north (NE 13 and NE 14) contain material considerably thicker than the mean.

The overburden varies in thickness from 2.5 ft (0.8 m) to 17 ft (5.2 m), with a mean of 8 ft (2.5 m). It is mainly loam but in many boreholes, for example, NE 10 and NE 13, the upper part of the Glacial Sand and Gravel is classified as overburden because of its excessive fines content. Field evidence suggests that all of the overburden in borehole NE 17 is probably Glacial Sand and Gravel. In boreholes NE 9, NE 14 and NE 20, the overburden consists of soil and made ground; in NE 16 soil overlies mineral. The 11 ft (3.4 m) of made ground on the mineral in borehole NE 20 is the filling of a former pond.

The mean grading figures for the block are fines 5 per cent, sand 65 per cent, gravel 30 per cent. The fines content of the mineral is greater than 10 per cent in only one borehole, NE 8, but a distinct bed of waste, 3.2 m (10.5 ft) in thickness, divides the mineral in borehole NE 9.

The estimate of total volume of mineral within the block is 68 million m3 ± 20 per cent.

Block D

Except at the extreme eastern and western margins, Glacial Sand and Gravel is present over the whole of this block: it rests on London Clay and frequently is overlain by Loam. North of Wivenhoe Park [033 242], where the Loam lies directly on London Clay, the extent of the mineral has been inferred. Borehole SW 4 was sited on Alluvium near the confluence of the
Fig. 5. Sketch-section across parts of resource blocks C and G
River Colne and the lower reaches of Salary Brook: it proved 14 ft (4.3 m) of overburden overlying 'very clayey' gravel only 3 ft (0.9 m) thick which, therefore, is not classified as potentially workable.

Potentially workable sand and gravel was proved in 11 of the remaining 13 boreholes, but in the other two, NE 7 and SE 1, the overburden ratio was greater than 3:1 so that the sand and gravel is not considered to be potentially workable.

The 39 ft (11.9 m) of brown silty clay and grey silt which were proved in borehole SE 1 have been identified tentatively as glacial Channel-fill Deposits. However, there is insufficient information to outline the extent and orientation of the channel.

The distribution of borehole data does not permit a barren area to be outlined and consequently 'nil thicknesses' (for boreholes where sand and gravel is not considered to be potentially workable) are included in the calculation of mean thickness.

The mean thickness of overburden and mineral is 15 ft (4.9 m) and 13 ft (4.0 m) respectively. The thickness of overburden in boreholes proving mineral varies from 4 ft (1.2 m) in NW 66 to 22 ft (6.7 m) in SW 10; mineral thickness ranges from 9 ft (2.7 m) in SW 14 to 27 ft (8.2 m) in SE 6. The overburden commonly consists of Loam but in boreholes SW 5, SE 5, SE 11 and NE 12, 'thicknesses of 3 ft (0.9 m), 5 ft (1.5 m), 6 ft (1.8 m) and 9 ft (2.7 m) respectively of Glacial Sand and Gravel are classified as overburden because of their excessive fines content. No consistent trends in thickness can be established, either for mineral or overburden.

The mean grading figures for the mineral in the block are fines 4 per cent, sand 57 per cent, gravel 39 per cent. The highest percentage of gravel occurs in borehole NW 62; broadly there appears to be a decrease in gravel content and a corresponding increase in the proportion of sand in the boreholes from west to east. There is consistently less than 10 per cent fines, without any discernible trends in distribution.

The estimated volume of mineral in the block is 40 million m³ ± 38 per cent.

Block F
This block comprises the area lying between the valleys of the River Colne and the Tenpenny Brook, in both of which the London Clay bedrock is exposed. In the Colne valley it is overlain by a broad spread of Alluvium and by a small patch of River Terrace Deposits at Wivenhoe [039 215], neither of which contain potentially workable sand and gravel.

Eight assessment boreholes and four Hydrogeological Department records form the basis of the calculation of the resources. Mineral recorded in the assessment boreholes ranges in thickness from 10 ft (3.0 m) in SW 11 to 35 ft (10.7 m) in SE 4 with a mean of 18 ft (5.5 m). In the four Hydrogeological Department records the thickness of the sand and gravel ranges from 12 ft (3.7 m) in 224/79 and 224/172b, to 43 ft (13.1 m) in 224/135.

The thickness of overburden, commonly Loam and soil, ranges from 1 ft (0.3 m) to 14 ft (4.3 m) in SE 2: the mean is 4.5 ft (1.3 m). In boreholes SW 11 and SE 2 parts of the Glacial Sand and Gravel contain excessive fines and are classified as overburden.

The mean grading of the mineral in the assessment boreholes, fines 5 per cent, sand 53 per cent and gravel 42 per cent, indicates that there is a higher proportion of gravel in this Alluvium.

Seven assessment boreholes and one Hydrogeological Department record were used to assess resources. The thickness of mineral ranges from 39 ft (11.9 m) in SW 2 to 12 ft (3.7 m) in SW 6, the mean being 22.5 ft (6.8 m). As on the adjoining sheet to the west (Ambrose, 1974) the upper part of the Glacial Sand and Gravel is consistently recorded as being sufficiently clayey to be regarded as overburden, ranging in thickness from 8 ft (2.4 m) in SW 7 to 13 ft (4.0 m) in SW 3, with a mean of 10 ft (3.0 m). No consistent trend in the variation of thickness of the mineral or of the overburden can be distinguished.

The mean grading of the mineral in the block as a whole is fines 3 per cent, sand 60 per cent and gravel 37 per cent. In most of the boreholes it is classified as sandy gravel, but there is a considerable range in the proportion of gravel, for example, there is 55 per cent in SW 3 but only 25 per cent in SW 7.

The volume of mineral in the block is estimated to be within ± 41 per cent of 57 million m³, the wide limits reflecting the substantial range of the thicknesses proved.
block than in the other six. The mineral normally consists of sandy gravel but in several boreholes close to the Colne Valley it is classified as gravel. The mineral is classified as pebbly sand only in borehole SE 14.

The estimate of total volume of mineral is 48 million m3 ± 38 per cent.

Block C

The valley of the Tenpenny Brook is floored by London Clay, overlain by a very narrow strip of Alluvium in the extreme south-west. On the valley sides Glacial Sand and Gravel outcrops continuously south of Moreham's Hall [085 239], but to the north its junction with the London Clay is partly concealed by Loam and the edge of the mineral is inferred.

Assessment boreholes NE 18, SE 15 and SE 20, which indicate that in the vicinity of Hare Green [093 249] sand and gravel is absent or covered by overburden in a ratio greater than 1:3, have been used to outline on the map an area which is judged not to be potentially workable. The area may be more or less extensive than indicated.

The 13 boreholes proving mineral have been used to compute the resources. The mineral ranges in thickness from 4 ft (1.2 m) in SE 10 and SE 16, to 28 ft (8.5 m) in SE 18, with a mean of 14.5 ft (4.4 m). It is thickest in boreholes SE 22, SE 18, SE 12 and SE 23, in the Frating area.

Overburden thicknesses range from 0.6 m (2 ft) in SE 23 to 11 ft (3.4 m) in SE 22 with a mean of 5.5 ft (1.7 m). The overburden normally is Loam, but in boreholes SE 17 and SE 18 it consists partly of Glacial Sand and Gravel considered to be unworkable due to contamination by excess clay and silt. The 4 ft (1.2 m) of brown, silty clay recorded at the surface in borehole SE 12 is probably River Brickearth, too thin and localised to be shown on the map.

The mean grading of the mineral in the block as a whole is fines 7 per cent, sand 62 per cent and gravel 31 per cent and it is commonly classified in the boreholes as 'sandy gravel', although local variations occur. For example, in borehole SE 13 the mineral contains over 50 per cent of pebbles and is classified as gravel, while pebbly sand is recorded in several boreholes, for example NE 13 and SE 22 (which contain at least 75 per cent sand). The fines exceed 10 per cent in only four boreholes, the highest figure being 17 per cent in borehole NE 24.

The estimate of total volume of mineral in the block is 46 million m3 ± 36 per cent.
Appendix A: Field Procedure

Trial and error during initial studies of the complex and variable glacial deposits of East Anglia and Essex showed that an absolute minimum of five sample points evenly distributed across the sand and gravel are needed to provide a worthwhile statistical assessment, but that, where possible, there should be not less than ten. Sample points are any points for which adequate information exists about the nature and thickness of the deposit and may include boreholes other than those drilled during the survey and exposures. In particular, the cooperation of sand and gravel operators ensures that boreholes are not drilled where reliable information is already available; although this may be used in the calculations, it is held confidentially by the Institute and cannot be disclosed.

The mineral shown on each 1:25 000 sheet is divided into resource blocks. The arbitrary size selected, 10 km², is a compromise to meet the aims of the survey by providing sufficient sample points in each block. As far as possible the block boundaries are determined by geological boundaries so that, for example, glacial and river terrace gravels are separated. Otherwise division is by arbitrary lines, which may bear no relationship to the geology. The blocks are drawn provisionally before drilling begins.

A reconnaissance of the ground is carried out to record any exposures and inquiries are made to ascertain what borehole information is available. Borehole sites are then selected to provide an even pattern of sample points at a density of approximately one per square kilometre. However, because broad trends are independently overlain by smaller scale characteristically random variations, it is unnecessary to adhere to a square grid pattern. Such factors as ease of access and the need to minimise disturbance to land and the public are taken into account in siting the holes; at the same time it is necessary to guard against the possibility that ease of access (that is, the positions of roads and farms) may reflect particular geological conditions, which may bias the drilling results.

The drilling machine employed should be capable of providing a continuous sample representative of all unconsolidated deposits, so that the in-situ grading can be determined, if necessary, to a depth of 30 m (100 ft) at a diameter of about 200 mm (8 in), beneath different types of overburden. It should be reliable, quiet, mobile and relatively small (so that it can be moved to sites of difficult access). Shell and auger rigs have proved to be almost ideal.

The rigs are modified to enable deposits above the water table to be drilled 'dry', instead of with water added to facilitate the drilling, to minimise the amount of material drawn in from outside the limits of the hole. The samples thus obtained are representative of the in-situ grading, and satisfy one of the most important aims of the survey. Below the water-table the rigs are used conventionally, although this may result in the loss of some of the fines fraction and the pumping action of the bailer tends to draw unwanted material into the hole from the sides or the bottom.

A continuous series of bulk samples is taken throughout the sand and gravel. Ideally samples are composed exclusively of the whole of the material encountered in the borehole between stated depths. However, care is taken to discard, as far as possible, material which has caved or has been pumped from the bottom of the hole. A new sample is commenced whenever there is an appreciable lithological change within the sand and gravel, or at every 1 m (3.3 ft) depth. The samples each weighing between 25 and 45 kg (55 and 100 lb), are despatched in heavy duty polythene bags to a laboratory for grading. The grading procedure is based on British Standard 1377 (Anon., 1967). Random checks on the accuracy of the grading are made in the laboratories of the Institute's Geochemical Division.

All data, including mean grading analysis figures calculated for the total thickness of the mineral, are entered on standard record sheets, abbreviated copies of which are reproduced in Appendix F.

Detailed records may be consulted at the appropriate offices of the Institute, upon application to the Head, Mineral Assessment Unit.

Appendix B: Statistical Procedure

STATISTICAL ASSESSMENT

1. A statistical assessment is made of an area of mineral greater than 2 km², if there is a minimum of five evenly spaced boreholes in the resource block (for smaller areas see para. 12 below).

2. The simple methods used in the calculations are consistent with the amount of data provided by the survey. Conventional symmetrical confidence limits are calculated for the 95 per cent probability level. That is there is a 5 per cent or one in twenty
3. The volume estimate (V) for the mineral in a given block is the product of the two variables, the sampled areas (A) and the mean thickness (\(\bar{t}_m \)) calculated from the individual thicknesses at the sample points. The standard deviations for these variables are related such that

\[
S_V = \sqrt{S_A^2 + \frac{S_{\bar{t}_m}^2}{n}} \quad \text{(1)}
\]

4. The above relationship may be transposed such that

\[
S_V = S_{\bar{t}_m} \sqrt{\frac{1}{n} + \frac{S_A^2}{S_{\bar{t}_m}^2}} \quad \text{(2)}
\]

From this it can be seen that as \(\frac{S_A}{S_{\bar{t}_m}} \) tends to 0, \(S_V \) tends to \(S_{\bar{t}_m} \).

If, therefore, the standard deviation for area is small with respect to that for mean thickness, the standard deviation for volume approximates to that for mean thickness.

5. Given that the number of approximately evenly spaced sample points in the sampled area is \(n \), with mineral thickness measurements \(t_{m1}, t_{m2}, \ldots, t_{mn} \), then the best estimate of mean thickness, \(\bar{t}_m \), expressed as a proportion of the mean thickness is given by

\[
\bar{t}_m = \frac{\sum (t_{m1} + t_{m2} + \ldots + t_{mn})}{n}
\]

For groups of closely spaced boreholes a discretionary weighting factor may be applied to avoid bias (see note on weighting below). The standard deviation for mean thickness, \(S_{\bar{t}_m} \), is estimated as a proportion of the mean thickness is given by

\[
S_{\bar{t}_m} = \frac{1}{n} \sqrt{\frac{(n-1)}{\sum (t_{m1} - \bar{t}_m)^2}} \quad \text{(n - 1)}
\]

where \(t_{m1} \) is any value in the series \(t_{m1} \) to \(t_{mn} \).

6. The sampled area in each resource block is coloured pink on the map. Wherever possible, calculations relate to the mineral within mapped geological boundaries (which may not necessarily correspond to the limits of a deposit). Where the area is not defined by a mapped boundary, that is, where the boundary is inferred, a distinctive symbol is used. Experience suggests that the errors in determining area are small relative to those in thickness.

The relationship

\[
S_A = 1/3 \text{ is assumed in all cases}
\]

It follows from equation (2) that

\[
S_{\bar{t}_m} \leq S_V \leq 1.05 S_{\bar{t}_m} \quad \text{(3)}
\]

7. The limits on the estimate of mean thickness of mineral, \(L_{\bar{t}_m} \), may be expressed in absolute units

\[
\pm \frac{t}{\sqrt{n}} \times S_{\bar{t}_m}
\]

or as a percentage

\[
\pm \frac{t}{\sqrt{n}} \times S_{\bar{t}_m} \times 100 \quad \text{per cent}
\]

where \(t \) is Student's \(t \) at the 95 per cent probability level for \((n - 1) \) degrees of freedom, evaluated by reference to statistical tables. (In applying Student's \(t \) it is assumed that the measurements are distributed normally).

8. Values of \(t \) at the 95 per cent probability level for values of \(n \) up to 20 are as follows:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(t)</th>
<th>(n)</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\infty)</td>
<td>11</td>
<td>2.228</td>
</tr>
<tr>
<td>2</td>
<td>12.706</td>
<td>12</td>
<td>2.201</td>
</tr>
<tr>
<td>3</td>
<td>4.303</td>
<td>13</td>
<td>2.179</td>
</tr>
<tr>
<td>4</td>
<td>3.182</td>
<td>14</td>
<td>2.160</td>
</tr>
<tr>
<td>5</td>
<td>2.776</td>
<td>15</td>
<td>2.145</td>
</tr>
<tr>
<td>6</td>
<td>2.571</td>
<td>16</td>
<td>2.131</td>
</tr>
<tr>
<td>7</td>
<td>2.447</td>
<td>17</td>
<td>2.120</td>
</tr>
<tr>
<td>8</td>
<td>2.365</td>
<td>18</td>
<td>2.110</td>
</tr>
<tr>
<td>9</td>
<td>2.306</td>
<td>19</td>
<td>2.101</td>
</tr>
<tr>
<td>10</td>
<td>2.262</td>
<td>20</td>
<td>2.093</td>
</tr>
</tbody>
</table>

(from Table 12, Biometrika Tables for Statisticians, Volume 1, Second Ed. Cambridge University Press, 1962).

When \(n \) is greater than 20, 1.96 is used (the value of \(t \) when \(n \) is infinity).

9. In calculating confidence limits for volume, \(L_V \), the following inequality corresponding to equation (3) is applied:

\[
L_{\bar{t}_m} \leq L_V \leq 1.05 L_{\bar{t}_m}
\]
Block Calculation

1:25 000

Fictitious (See Fig 7 for map)

Area
- **Block:** 11.08 km²
- **Mineral:** 8.32 km²

Volume
- **Overburden:** 21 million m³
- **Mineral:** 54 million m³

Mean Thickness
- **Overburden:** 2.5 m
- **Mineral:** 6.5 m

Confidence limits of the estimate of mineral volume at the 95 per cent probability level: ± 20 per cent

That is, the volume of mineral (with 95 per cent probability) is 54 ± 11 million m³

Thickness estimate: measurements in metres

\[l_o = \text{overburden thickness} \quad l_m = \text{mineral thickness} \]

<table>
<thead>
<tr>
<th>Sample point</th>
<th>Weighting</th>
<th>Overburden</th>
<th>Mineral</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(w)</td>
<td>(l_o)</td>
<td>(wl_o)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(w)</td>
<td>(l_m)</td>
<td>(wl_m)</td>
<td></td>
</tr>
<tr>
<td>SE 14</td>
<td>1</td>
<td>1.5</td>
<td>9.4</td>
<td>MAU boreholes</td>
</tr>
<tr>
<td>SE 18</td>
<td>1</td>
<td>3.3</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>SE 20</td>
<td>1</td>
<td>nil</td>
<td>6.9</td>
<td></td>
</tr>
<tr>
<td>SE 22</td>
<td>1</td>
<td>0.7</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>SE 23</td>
<td>1</td>
<td>6.2</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>SE 24</td>
<td>1</td>
<td>4.3</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>SE 17</td>
<td>(\frac{3}{4})</td>
<td>1.2 {</td>
<td>9.8 }</td>
<td>Hydrogeological Dept</td>
</tr>
<tr>
<td>123/45</td>
<td>(\frac{3}{4})</td>
<td>2.0 {</td>
<td>4.6 }</td>
<td>record</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{4})</td>
<td>4.5 {</td>
<td>3.2 }</td>
<td>Close group of four</td>
</tr>
<tr>
<td>3</td>
<td>(\frac{1}{4})</td>
<td>0.4 }</td>
<td>6.8 }</td>
<td>boreholes (commercial)</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{4})</td>
<td>2.8 }</td>
<td>5.9 }</td>
<td></td>
</tr>
</tbody>
</table>

\[\Sigma w = 8 \quad \Sigma wl_o = 20.1 \quad \Sigma wl_m = 52.0 \]

\[l_o = \text{2.5} \quad l_m = \text{6.5} \]

Calculation of confidence limits

\[\Sigma (l_m - \bar{l}_m)^2 = 15.82 \]

\[n = 8 \]

\[t = 2.365 \]

\[L_V \text{ is calculated as} \]

\[1.05 \times \frac{t}{n} \sqrt{\frac{\Sigma (l_m - \bar{l}_m)^2 \times 100}{n(n-1)}} \]

\[= 1.05 \times \frac{2.365}{6.5} \sqrt{\frac{15.82 \times 100}{8 \times 7}} \]

\[= 20.3 \]

\[\approx 20 \text{ per cent} \]

Fig. 6. Example of resource block assessment: calculation and results
Fig. 7. Example of resource block assessment: map of fictitious block

Fig. 8. Diagram to show the descriptive categories used in the classification of sand and gravel.
10. In summary, for values of n between 5 and 20, \(L_v \) is calculated as
\[
\frac{1.05 \times t \times \sqrt{n} \left(\frac{1}{m} - \frac{1}{m_1} \right)^2}{n (n - 1) x 100 \text{ per cent}}
\]
and when n is greater than 20, as
\[
\frac{1.05 \times 1.96 \times \sqrt{n} \left(\frac{1}{m} - \frac{1}{m_1} \right)^2}{n (n - 1) x 100 \text{ per cent}}
\]

11. The application of this procedure to a fictitious area is illustrated in Figs. 6 and 7.

Inferred Assessment

12. If the sampled area of mineral in a resource block is between 0.25 km\(^2\) and 2 km\(^2\), an assessment is inferred, based on geological and topographical information usually supported by the data from one or two boreholes. The volume of mineral is calculated as the product of the area, measured from field data, and the estimated thickness. Confidence limits are not calculated.

13. In some cases a resource block may include an area left uncoloured on the map, within which mineral (as defined) is interpreted to be generally absent. If there is reason to believe that some mineral may be present, an inferred assessment may be made.

14. No assessment is attempted for an isolated area of mineral less than 0.25 km\(^2\).

15. Note on Weighting
The thickness of a deposit at any point may be governed solely by the position of the point in relation to a broad trend. However, most sand and gravel deposits also exhibit a random pattern of local, and sometimes considerable, variation in thickness. Thus the distribution of sample points need be only approximately regular and in estimating the mean thickness only simple weighting is necessary. In practice, equal weighting can often be applied to thicknesses at all sample points. If, however, there is a distinctly unequal distribution of points, bias is avoided by dividing the sampled area into broad zones, to each of which a value roughly proportional to its area is assigned. This value is then shared between the data points within the zone as the weighting factor.

Appendix C: Classification and Description of Sand and Gravel

For the purposes of assessing resources of sand and gravel a classification should take account of economically important characteristics of the deposit, in particular the absolute content of fines and the ratio of sand to gravel.

The terminology commonly used by geologists when describing sedimentary rocks (Wentworth, 1922) is not entirely satisfactory for this purpose. For example, Wentworth proposed that a deposit should be described as a 'gravelly sand' when it contains more sand than gravel and there is at least 10 per cent of gravel, provided that there is less than 10 per cent of material finer than sand (less than 1/16 mm) and coarser than pebbles (more than 64 mm diameter). Because deposits containing more than 10 per cent fines are not embraced by this system a modified binary classification based on Willman (1942) has been adopted.

When the fines content exceeds 40 per cent the material is not considered to be potentially workable and falls outside the definition of mineral. Deposits which contain 40 per cent fines or less are classified primarily on the ratio of sand to gravel but qualified in the light of the fines content, as follows: less than 10 per cent fines - no qualification; 10 per cent or more but less than 20 per cent fines - 'clayey'; 20 to 40 per cent fines - 'very clayey'.

The term 'clay' (as written, with single quote marks) is used to describe all material passing 1/16 mm. Thus it has no mineralogical significance and includes particles falling within the size range of silt. The normal meaning applies to the term clay where it does not appear in single quotation marks.

The ratio of sand to gravel defines the boundaries between sand, pebbly sand, sandy gravel and gravel (at 19:1, 3:1 and 1:1).

Thus it is possible to classify the mineral into one of twelve descriptive categories (see Fig. 8). The procedure is as follows:

1. Classify according to ratio of sand to gravel;
2. Describe fines.

For example, a deposit grading 11 per cent gravel, 70 per cent sand and 19 per cent fines is classified as 'clayey' pebbly sand. This short description is included in the borehole log (see Note 11, p. 21).

Many differing proposals exist for the classification of the grain size of sediments (Atterberg, 1905; Udden, 1914; Wentworth, 1922; Wentworth, 1935; Allen, 1936; Twenhofel, 1937; Lane and others, 1947). As Archer (1970a, b) has emphasised, there is a
pressing need for a simple metric scale acceptable to both scientific and engineering interests, for which the class limit sizes correspond closely with certain marked changes in the natural properties of mineral particles. For example, there is an important change in the degree of cohesion between particles at about the 1/16 mm size, which approximates to the generally accepted boundary between silt and sand. These and other requirements are met by a system based on Udden's geometric scale and a simplified form of Wentworth's terminology (Table 3), which is used in this Report.

The fairly wide intervals in the scale are consistent with the general level of accuracy of the qualitative assessments of the resource blocks. Three sizes of sand are recognised, fine (-1 +1/16 mm), medium (-1 +1/4 mm) and coarse (-4 +1 mm). The boundary at 16 mm distinguishes a range of finer gravel (-16 +4 mm), often characterised by abundance of worn tough pebbles of vein quartz, from larger pebbles often of notably different materials. The boundary at 64 mm, distinguishes pebbles from cobbles. The term 'gravel' is used loosely to denote both pebble-sized and cobble-sized material.

The size distribution of borehole samples is determined by sieve analysis, which is presented by the laboratory as logarithmic cumulative curves (see, for example, British Standard 1377 (Anon., 1967)). In this report the grading is tabulated on the borehole record sheets (Appendix F), the intercepts corresponding with the simple geometric scale 1/16 mm, 1/4 mm, 1 mm, 4 mm, 16 mm and so on as required. Original sample grading curves are available for reference at the appropriate office of the Institute.

Each bulk sample is described, subjectively, by a geologist at the borehole site. Being based on visual examination, the description of the grading is inexact, the accuracy depending on the experience of the observer. The descriptions recorded are modified, as necessary, when the laboratory results become available.

The relative proportions of the rock types present in the gravel fraction are indicated by the use of the words 'and' or 'with'. For example, 'flint and quartz' indicates very approximate equal proportions with neither constituent accounting for less than about 25 per cent of the whole; 'flint with quartz' indicates that flint is dominant and quartz, the principal accessory rock type, comprises 5 to 25 per cent of the whole. Where the accessory material accounts for less than 5 per cent of the whole, but is still readily apparent, the phrase 'with some' has been used. Rare constituents are referred to as 'trace'.

The terms used in the field to describe the degree of rounding of particles, which is concerned with the sharpness of the edges and corners of a clastic fragment and not the shape (after Pettijohn, 1957), are as follows.

Angular: showing little or no evidence of wear; sharp edges and corners.
Subangular: showing definite effects of wear. Fragments still have their original form but edges and corners begin to be rounded off.
Subrounded: showing considerable wear. The edges and corners are rounded off to smooth curves. Original grain shape is still distinct.
Rounded: original faces almost completely destroyed, but some comparatively flat surfaces may still remain. All original edges and corners have been smoothed off to rather broad curves. Original shape is still apparent.
Well-rounded: no original faces, edges or corners left. The entire surface consists of broad curves; flat areas are absent. The original shape is suggested by the present form of the grain.

Table 3. Classification of gravel, sand and fines

<table>
<thead>
<tr>
<th>Grain size description</th>
<th>Qualification</th>
<th>Primary classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 mm</td>
<td>Cobble</td>
<td>Gravel</td>
</tr>
<tr>
<td>16 mm</td>
<td>Pebble</td>
<td>Coarse</td>
</tr>
<tr>
<td>4 mm</td>
<td></td>
<td>Fine</td>
</tr>
<tr>
<td>1 mm</td>
<td>Sand</td>
<td>Coarse</td>
</tr>
<tr>
<td>1/4 mm</td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>1/16 mm (silt and clay)</td>
<td>Fines</td>
<td>Fine</td>
</tr>
</tbody>
</table>
Appendix D: Explanation of the Borehole Records

ANNOTATED EXAMPLE

TM 02 NE 17' 0823 2622

Surface level (+30.5 m) +100 ft
Water struck at (+26.5 m) +87 ft
Wirth B0, 8-inch diameter
December 1969

Opposite Great Bromley Hall
Block C

Overburden (2.1 m) 7 ft
Mineral (5.5 m) 18 ft
Waste (0.3 m) 1 ft
Bedrock (0.9 m+) 3 ft+

LOG

Thickness
(m) ft
Depth
(m) ft
(2.1) 7 (2.1) 7
(5.5) 18 (7.6) 25

Glacial Sand Soil and brown clay
and Gravel "Very clayey" between"
22 ft (6.7 m) and 25 ft (7.6 m).
Gravel: mainly fine, becoming fine to
coarse at base; subangular to sub-
rounded flints.
Sand: rust brown to yellowish-brown;
coarse with medium becoming mainly
medium below.

Very silty sand with some gravel.

London Clay Brown, weathered clay, passing down
into fresh, blue clay.

GRADING

% mm %
Gravel 31 +16 10 7 - 10
-16+4 : 21 10 - 13
-13 : 16 - 19
Sand 61 -4+1 : 34 19 - 22
-1+1/2 : 24 22 - 25
-1+1/16 : 3
Fines 8 -1/16 8

The numbered paragraphs below correspond
with the annotations given on the specimen
record above.

1. Borehole Registration Number.
Each Mineral Assessment Unit (MAU) borehole
is identified by a Registration Number. This
consists of two statements.
1) The number of the 1:25 000 sheet on
which the borehole lies, for example,
TM 02.
2) The quarter of the 1:25 000 sheet on
which the borehole lies and its number in
a series for that quarter, for example,
NE 17.
Thus the full Registration Number is TM 02
NE 17. Usually this is abbreviated to NE 17 in
the text.

2. The National Grid Reference
All National Grid References in this publication
lie within the 100 km square TM unless otherwise
stated. Grid references are given to eight figures,
accurate to within 10 m for borehole locations.
(In the text, six-figure grid references are used
for more approximate locations, for example,
for farms).

3. Location
The position of the borehole is generally referred
to the nearest named locality on the 1:25 000 base
map and the resource block in which it lies is
stated.

4. Surface Level
The surface level at the borehole site is given
in metres and feet above Ordnance Datum. All

20
measurements were made in feet; approximate conversions to metres are given in brackets. An asterisk indicates that the surface level has been estimated.

5. Groundwater Conditions
If groundwater was present the level at which it was encountered is normally given (in metres and feet above Ordnance Datum).

6. Type of Drill and Date of Drilling
Two types of drilling machine have been used in this survey; a shell and auger rig and a Wirth (a cased power auger). The type of machine, the external diameter of the casing used, and the month and year of completion of the borehole are stated.

7. Overburden, Mineral, Waste and Bedrock
Mineral is sand and gravel which, as part of a deposit, falls within the arbitrary definition of potentially workable material (see p. 1). Bedrock is the 'formation', 'country rock' or 'rock head' below which potentially workable sand and gravel will not be found.

Waste is any material other than bedrock or mineral. Where waste occurs between the surface and mineral it is classified as overburden.

8. Thickness and Depth
Although most measurements were made in feet, some were recorded in metres; the conversions appear in brackets. Metric conversions, the thicknesses of beds and the depth from the surface of their bases have been rounded off to the nearest 0.1 m because quotation to two places of decimals would imply a higher order of accuracy than could be justified by the original figures. Similarly conversions from metres to feet have been rounded off to the nearest 0.5 ft. Where figures have been rounded in this way there may be a discrepancy between the sum of the thicknesses and the recorded depths.

9. The plus sign (+) indicates that the base of the deposit was not reached during drilling.

10. Geological Classification
The geological classification (p. 3) is given whenever possible.

11. Lithological Description
When sand and gravel is recorded a general description based on the mean grading characteristics (for details see Appendix C) is followed by more detailed particulars. The description of other rocks is based on visual examination, in the field.

12. Sampling
A continuous series of bulk samples is taken throughout the thickness of sand and gravel. A new sample is commenced whenever there is an appreciable lithological change within the sand and gravel or at every 3 ft or 1 m of depth.

13. Grading Results
The limits are as follows: gravel, +4 mm; sand, -4+1/16 mm; fines, -1/16 mm.

14. If, exceptionally, grading results are not available, no attempt is made to estimate the probable grading (and the grading diagram may not be shown on the map).

15. Mean Grading
The grading of the full thickness of the mineral horizon identified in the log is the mean of the individual sample gradings weighted by the thicknesses represented, if these vary. The classification used is shown in Table 3.

Fully representative sampling of sand and gravel is difficult to achieve particularly where groundwater levels are high. Comparison between boreholes and adjacent exposures suggests that in borehole samples the proportion of sand may be higher and the proportions of fines and coarse gravel (+16 mm) may be lower.
Appendix E: List of Boreholes Used in the Assessment of Resources

Mineral Assessment Unit Boreholes

<table>
<thead>
<tr>
<th>Borehole Number</th>
<th>Grid Reference</th>
<th>Borehole Number</th>
<th>Grid Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM 02 NW</td>
<td></td>
<td>TM 02 SW</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0040 2974</td>
<td>1</td>
<td>0086 3100</td>
</tr>
<tr>
<td>49</td>
<td>0100 2953</td>
<td>2</td>
<td>0163 2232</td>
</tr>
<tr>
<td>50</td>
<td>0060 2745</td>
<td>3</td>
<td>0197 2982</td>
</tr>
<tr>
<td>51</td>
<td>0156 2987</td>
<td>4</td>
<td>0224 2434</td>
</tr>
<tr>
<td>52</td>
<td>0166 2833</td>
<td>5</td>
<td>0302 2352</td>
</tr>
<tr>
<td>53</td>
<td>0297 2870</td>
<td>6</td>
<td>0252 2211</td>
</tr>
<tr>
<td>54</td>
<td>0235 2829</td>
<td>7</td>
<td>0287 2098</td>
</tr>
<tr>
<td>55</td>
<td>0257 2714</td>
<td>8</td>
<td>0249 2012</td>
</tr>
<tr>
<td>56</td>
<td>0224 2629</td>
<td>9</td>
<td>0327 2461</td>
</tr>
<tr>
<td>57</td>
<td>0236 2515</td>
<td>10</td>
<td>0378 2386</td>
</tr>
<tr>
<td>58</td>
<td>0342 2886</td>
<td>11</td>
<td>0374 2260</td>
</tr>
<tr>
<td>59</td>
<td>0390 2821</td>
<td>12</td>
<td>0352 2042</td>
</tr>
<tr>
<td>60</td>
<td>0320 2771</td>
<td>13</td>
<td>0464 2453</td>
</tr>
<tr>
<td>61</td>
<td>0368 2644</td>
<td>14</td>
<td>0445 2366</td>
</tr>
<tr>
<td>62</td>
<td>0361 2510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>0454 2895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>0489 2613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>0426 2568</td>
<td>1</td>
<td>0558 2414</td>
</tr>
<tr>
<td>66</td>
<td>0494 2524</td>
<td>2</td>
<td>0584 2314</td>
</tr>
<tr>
<td>67</td>
<td>0492 2704</td>
<td>3</td>
<td>0516 2197</td>
</tr>
<tr>
<td>TM 02 NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0592 2955</td>
<td>7</td>
<td>0619 2223</td>
</tr>
<tr>
<td>2</td>
<td>0588 2777</td>
<td>8</td>
<td>0680 2179</td>
</tr>
<tr>
<td>3</td>
<td>0571 2595</td>
<td>9</td>
<td>0653 2070</td>
</tr>
<tr>
<td>4</td>
<td>0634 2869</td>
<td>10</td>
<td>0792 2468</td>
</tr>
<tr>
<td>5</td>
<td>0661 2768</td>
<td>11</td>
<td>0734 2361</td>
</tr>
<tr>
<td>6</td>
<td>0619 2694</td>
<td>12</td>
<td>0778 2303</td>
</tr>
<tr>
<td>7</td>
<td>0630 2527</td>
<td>13</td>
<td>0802 2119</td>
</tr>
<tr>
<td>8</td>
<td>0725 2969</td>
<td>14</td>
<td>0739 2054</td>
</tr>
<tr>
<td>9</td>
<td>0725 2879</td>
<td>15</td>
<td>0882 2470</td>
</tr>
<tr>
<td>10</td>
<td>0775 2743</td>
<td>16</td>
<td>0846 2382</td>
</tr>
<tr>
<td>11</td>
<td>0717 2645</td>
<td>17</td>
<td>0884 2324</td>
</tr>
<tr>
<td>12</td>
<td>0729 2548</td>
<td>18</td>
<td>0826 2206</td>
</tr>
<tr>
<td>13</td>
<td>0805 2995</td>
<td>19</td>
<td>0842 2047</td>
</tr>
<tr>
<td>14</td>
<td>0835 2922</td>
<td>20</td>
<td>0974 2444</td>
</tr>
<tr>
<td>15</td>
<td>0843 2855</td>
<td>21</td>
<td>0959 2349</td>
</tr>
<tr>
<td>16</td>
<td>0852 2719</td>
<td>22</td>
<td>0916 2268</td>
</tr>
<tr>
<td>17</td>
<td>0823 2622</td>
<td>23</td>
<td>0911 2137</td>
</tr>
<tr>
<td>18</td>
<td>0849 2533</td>
<td>24</td>
<td>0962 2025</td>
</tr>
<tr>
<td>19</td>
<td>0966 2958</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0965 2852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0941 2777</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0986 2677</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0875 2612</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0981 2530</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OTHER BOREHOLES

1. Hydrogeological Department Boreholes (Standon-Batt, 1969): 224/29; 224/70; 224/79; 224/80; 224/125; 224/135; 224/172b; 224/254a. (Details of the last borehole are held in the National Well Record Collection of the Hydrogeological Department of the Institute, and may be inspected upon application to the Director, Institute of Geological Sciences, Exhibition Road, London, SW7 2DE).

2. Site Investigation Records, Colchester Northern Bypass (47 boreholes).

22
Appendix F: Mineral Assessment Unit Borehole Records

Near Runkin's Corner Block A

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface level (+45.1 m) +148 ft*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water not struck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirth B0, 8 inch diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loam</td>
<td>1.8</td>
<td>6</td>
</tr>
<tr>
<td>Soil and brown, sandy clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>Clay with gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>0.9+</td>
<td>3</td>
</tr>
<tr>
<td>Weathered, brown clay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Severalls Lane Block A

<table>
<thead>
<tr>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface level (+47.2 m) +155 ft*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water struck at (+42.8 m) +138 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wirth B0, 8 inch diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December 1969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loam</td>
<td>3.4</td>
<td>11</td>
</tr>
<tr>
<td>Soil and brown clay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>0.9</td>
<td>3</td>
</tr>
<tr>
<td>Very clayey sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pebbley Sand. Fines content significant throughout the deposit.</td>
<td>(4.6)</td>
<td>15</td>
</tr>
<tr>
<td>Sand: greyish-brown to rust brown; medium to coarse down to 20 ft (6.1 m); mainly medium below. Gravel: mostly fine; subangular to subrounded flints with occasional quartzites and quartz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>0.9+</td>
<td>3</td>
</tr>
<tr>
<td>Weathered brown clay</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No grading information available.
<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Gravel</th>
<th>Sand</th>
<th>Fines</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 - 14</td>
<td>17 %</td>
<td>73 %</td>
<td>10 %</td>
</tr>
<tr>
<td>14 - 17</td>
<td>-16+4 %</td>
<td>43 %</td>
<td></td>
</tr>
<tr>
<td>17 - 18</td>
<td>-1+1/4 %</td>
<td>8 %</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1/16 %</td>
<td>10 %</td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+47.2 m) +155 ft *
Water struck at (+43.6 m) +143 ft
Wirth B0, 8 inch diameter
November 1969

Loam
Made ground, soil and brown clay.

Glacial Sand and Gravel
'Clayey' pebbly sand. A few cobbles present in the top 6 ft (1.8 m), gravel content decreases with depth whilst fines content increases.
Sand: brown; medium with some fine and coarse.
Gravel: fine and coarse; subangular to subrounded flints, quartzites and quartz.

London Clay
Brown weathered clay.

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel</td>
<td>18</td>
<td>+64 : 1</td>
<td>12 - 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-64+16 : 7</td>
<td>15 - 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4 : 10</td>
<td>18 - 21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21 - 24</td>
</tr>
<tr>
<td>Sand</td>
<td>69</td>
<td>-4+1 : 9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/2 : 46</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/16 : 14</td>
<td>41</td>
</tr>
<tr>
<td>Fines</td>
<td>13</td>
<td>-1/16 : 13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Thickness (m) ft Depth (m) ft
Overburden (3.7 m) 12 ft
Mineral (3.7 m) 12 ft
Bedrock (0.9 m+) 3 ft+

(3.7) 12 (7.3) 24
(0.9+) 3+ (8.2) 27
Surface level (+41.1 m) +135 ft +
Water struck at (+36.0 m) +118 ft
Wirth B0, 8 inch diameter
December 1969

Loam
Soil and brown silty clay.

Glacial Sand and Gravel
Very clayey fine sand.

Pebbly sand. 'Clayey' between 15 ft (4.6 m) and 18 ft (5.5 m) and below 21 ft (6.4 m). Cobbles present between 15 ft (4.6 m) and 18 ft (5.5 m). Sand: rust brown, mainly medium. Gravel: fine and coarse; subangular to subrounded flints.

London Clay
Brown weathered clay becoming blue.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>12</td>
<td>+64</td>
<td>1</td>
<td>12 - 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-64+16</td>
<td>4</td>
<td>15 - 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>7</td>
<td>18 - 21</td>
</tr>
<tr>
<td>Sand</td>
<td>80</td>
<td>-4+1</td>
<td>11</td>
<td>21 - 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+3/4</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3/4+1/16</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>8</td>
<td>-1/16</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+41.1 m) +135 ft
Water struck at (+38.7 m) +127 ft
Wirth B0, 8 inch diameter
November 1969

Loam
- Soil and brown clay.

Glacial Sand and Gravel
- Pebbly sand. Very sandy in top 3 ft (0.9 m). 'Clayey' from 25 ft (7.6 m) to 28 ft (8.5 m).
- Sand: yellowish-white; fine with medium in top 3 ft (0.9 m); mainly medium below.
- Gravel: fine with very little coarse; flints and quartz.

London Clay
- Brown weathered clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel 20</td>
<td>+16</td>
<td>10 - 13</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>13 - 16</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-16+4+4</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>Sand 77</td>
<td>-4+1</td>
<td>19 - 22</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-4+1+1</td>
<td>22 - 25</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>25 - 28</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>-1/16</td>
<td>28 - 31</td>
<td>1</td>
</tr>
<tr>
<td>Fines 3</td>
<td>-1/16</td>
<td>31 - 34</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1/16</td>
<td>34 - 37</td>
<td>0</td>
</tr>
</tbody>
</table>
TM 02 NW 54

Surface level (+39.6 m) +130 ft
Water not struck
With B0, 8 inch diameter
November 1969

Loam
Made ground, soil and brown clay with occasional calcareous fragments (possibly derived from London Clay?).

London Clay
Brown weathered clay.

TM 02 NW 55

Surface level (+38.1 m) +125 ft
Water struck at (+32.9 m) +108 ft
Wirth B0, 8 inch diameter
November 1969

Loam
Soil and brown sandy clay.

Glacial Sand and Gravel
Pebbly sand. Gravelly in the top 6 ft (1.8 m), becoming sandy below and gravelly again towards the base of the deposit. 'Clayey' between 21 ft (6.4 m) and 24 ft (7.3 m).
Sand; brown; mainly medium in top 6 ft (1.8 m); fine to medium below becoming mainly medium again in bottom 3 ft (0.9 m).
Gravel: mainly fine, with some coarse; subrounded and subangular flints and occasional subrounded quartz.

London Clay
Blue clay, weathered brown for a few inches (0.9+) 3+ (9.1) 30 below the surface.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel 26</td>
<td>8</td>
<td>9 - 12</td>
<td>Fines</td>
</tr>
<tr>
<td>-16+4</td>
<td>18</td>
<td>12 - 15</td>
<td>Sand</td>
</tr>
<tr>
<td>-1</td>
<td>15 - 18</td>
<td>7</td>
<td>88</td>
</tr>
<tr>
<td>Sand 66</td>
<td>8</td>
<td>18 - 21</td>
<td>Gravel</td>
</tr>
<tr>
<td>-4+1</td>
<td>37</td>
<td>21 - 24</td>
<td></td>
</tr>
<tr>
<td>-1/4+1/16</td>
<td>21</td>
<td>24 - 27</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>8</td>
<td>-1/16</td>
<td>8</td>
</tr>
</tbody>
</table>
Surface level (+35.1 m) +115 ft
Water struck at (+32.0 m) +105 ft
Wirth B0, 8 inch diameter
November 1969

Soil and subsoil

Glacial Sand and Gravel

Very clayey sand.

Sand. Gravel is present in the top 6 ft (1.8 m) only.
Sand: yellowish-brown; medium grade with some fine.
Gravel: fine to coarse; subrounded flints and quartz.

London Clay

Blue clay weathered brown for a few inches below the surface.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>3+16</td>
<td>1</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>2</td>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>Sand</td>
<td>94+1</td>
<td>1</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>-1+½</td>
<td>68</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>-½+1/16</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+27.1 m) +89 ft
Water struck at (+23.2 m) +76 ft
Wirth B0, 8 inch diameter
December 1969

Opposite Park Farm

Block A

Overburden (2.7 m) 9 ft
Mineral (4.3 m) 14 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.2)</td>
<td>4</td>
</tr>
<tr>
<td>(1.5)</td>
<td>5</td>
</tr>
<tr>
<td>(4.3)</td>
<td>14</td>
</tr>
</tbody>
</table>

Soil and subsoil

Glacial Sand and Gravel

Sandy clay with gravel. Sandy gravel. The gravel content increases with depth at the expense of the sand. Cobbles occur in the bottom 2 ft (0.6 m). Fines only recorded between 12 ft (3.7 m) and 18 ft (15.5 m). Gravel: mainly fine at top, becoming increasingly coarse with depth; sub-angular to subrounded flint and quartz. Sand: brown; medium with fine and coarse.

London Clay

Brown weathered clay. (0.9+) 3+ (7.9) 26

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel</td>
<td>48</td>
<td>16 : 21</td>
<td>9 - 12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>12 : 27</td>
<td>12 - 15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 - 18</td>
<td>5</td>
</tr>
<tr>
<td>Sand</td>
<td>50</td>
<td>-4+1 : 10</td>
<td>18 - 21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-1+4</td>
<td>31 : 31</td>
<td>21 - 23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-1/16</td>
<td>9 : 30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fines 2 -1/16 : 2
Surface level (+38.1 m) +125 ft
Water struck at (+33.8 m) +111 ft
Wirth B6, 8 inch diameter
November 1969

Loam
Soil and brown, sandy, silty clay.

Glacial Sand
and Gravel
Sandy gravel. 'Clayey' in the top 3 ft
(0.9 m).
Gravel: fine with some coarse towards
the top; flints and quartz, mainly well
rounded in top 3 ft (0.9 m), subangular
and occasionally subrounded below.
Sand: rust brown becoming fawn below
12 ft (3.7 m); medium with some fine
and coarse.

London Clay
Brown weathered clay.

%	mm		Depth below		Percentages		
-----	----	---	surface (ft)		Fines	Sand	Gravel
Gravel	40	+16	14	9 - 12	11	48	41
	-16-4	: 26		12 - 15	6	45	49
				15 - 18	5	50	45
Sand	54	-4+1	10	18 - 21	4	62	34
	-1+½	: 35		21 - 24	3	68	29
	-1+1/16	: 9					
Fines	6	-1/16	: 6				
Surface level (+36.6 m) +120 ft
Water struck at (+33.8 m) +111 ft
Wirth BO, 8 inch diameter
November 1969

Glacial Sand and Gravel
Soil overlying yellowish-brown, sandy clay.
Gravel. A few cobbles are present in the middle of the deposit.
Gravel: fine and coarse, mostly fine in top 3 ft (0.9 m; subangular to sub-rounded flints and quartz, high proportion of subangular pebbles below 13 ft (4.0 m).
Sand: yellowish-brown; medium with coarse and a trace of fine.

London Clay
Blue clay, weathered brown for a few inches below the surface.

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel 57</td>
<td>+16</td>
<td>25</td>
<td>10 - 13</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>32</td>
<td>13 - 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 - 19</td>
<td>1</td>
</tr>
<tr>
<td>Sand 37</td>
<td>-4+1</td>
<td>11</td>
<td>19 - 22</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>22</td>
<td>22 - 25</td>
</tr>
<tr>
<td></td>
<td>-3/4+1/16</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>6</td>
<td>-1/16</td>
<td>6</td>
</tr>
</tbody>
</table>

Overburden (3.0 m) 10 ft
Mineral (4.6 m) 15 ft
Bedrock (0.9 m+) 3 ft+

Thickness (m) ft
Depth (m) ft

(3.0) 10 (3.0) 10
(4.6) 15 (7.6) 25
(0.9+) 3+ (8.5) 28
TM 02 NW 60 0320 2771

Surface level (+34.1 m) +112 ft *
Water not struck
Wirth B0, 8 inch diameter
October 1969

Overburden (4.6 m) 15 ft
Mineral (3.7 m) 12 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6</td>
<td>15</td>
</tr>
<tr>
<td>3.7</td>
<td>12</td>
</tr>
<tr>
<td>0.9+</td>
<td>3+</td>
</tr>
</tbody>
</table>

Loam
Soil and brown sandy silty giving way to grey silt below 9 ft (2.7 m).

Glacial Sand and Gravel
?Sandy gravel.
Gravel: fine to coarse; subangular to subrounded flints and quartz, with some quartzites.
Sand: rust brown becoming grey; fine, medium and coarse.

London Clay
Brown weathered clay.

No grading information available

TM 02 NW 61 0368 2644

Surface level (+36.0 m) +118 ft *
Water struck at (+28.7 m) +94 ft
Wirth B0, 8 inch diameter
November 1969

Overburden (5.8 m) 19 ft
Mineral (3.7 m) 12 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>19</td>
</tr>
<tr>
<td>3.7</td>
<td>12</td>
</tr>
<tr>
<td>0.9+</td>
<td>3+</td>
</tr>
</tbody>
</table>

Loam
Soil and brown silty clay.

Glacial Sand and Gravel
Pebbly sand.
Sand: brown; medium with a little fine and coarse.
Gravel: fine and coarse; subangular to subrounded flints.

London Clay
Blue clay, weathered brown for a few inches below the surface.

<table>
<thead>
<tr>
<th>% mm</th>
<th>% depth below surface (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 +16</td>
<td>19 - 22</td>
</tr>
<tr>
<td>-16+4</td>
<td>22 - 25</td>
</tr>
<tr>
<td>93 -4+1</td>
<td>25 - 28</td>
</tr>
<tr>
<td>4+1</td>
<td>28 - 31</td>
</tr>
<tr>
<td>75 -1/16</td>
<td>32 - 34</td>
</tr>
<tr>
<td>9 -1/16</td>
<td>35 - 37</td>
</tr>
</tbody>
</table>

Percentages
Fines Sand Gravel
0 92 8
0 94 6
0 92 8

Crockleford Heath Block B

33
Surface level (+33.5 m) +110 ft
Water struck at (+29.6 m) +97 ft
Wirth B0, 8 inch diameter
November 1969

Near Colleer’s Farm Block D

Loam
Soil and brown clay with gravel.

Glacial Sand and Gravel
Gravel: fine and coarse; subangular to subrounded flints and some quartz.
Sand: brown; medium with some coarse.

London Clay
Blue clay, weathered brown for a few inches below the surface.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>56</td>
<td>+16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>-4+1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1/4+1/16</td>
</tr>
<tr>
<td>Fines</td>
<td>0</td>
<td>-1/16</td>
</tr>
</tbody>
</table>

Depth below surface (ft)

<table>
<thead>
<tr>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Percentages

<table>
<thead>
<tr>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>0</td>
<td>31</td>
<td>69</td>
</tr>
<tr>
<td>0</td>
<td>53</td>
<td>47</td>
</tr>
<tr>
<td>0</td>
<td>29</td>
<td>71</td>
</tr>
</tbody>
</table>

Thickness

<table>
<thead>
<tr>
<th>Overburden (3.7 m)</th>
<th>12 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral (3.0 m)</td>
<td>10 ft</td>
</tr>
<tr>
<td>Bedrock (0.9 m+)</td>
<td>3 ft+</td>
</tr>
</tbody>
</table>

Depth

<table>
<thead>
<tr>
<th>(m)</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.7)</td>
<td>12</td>
</tr>
<tr>
<td>(3.0)</td>
<td>10</td>
</tr>
<tr>
<td>(0.9+)</td>
<td>3+</td>
</tr>
</tbody>
</table>

Overburden (3.7 m) 12 ft
Mineral (3.0 m) 10 ft
Bedrock (0.9 m+) 3 ft+
Surface level (+37.5 m) +123 ft
Water struck at (+33.2 m) +109 ft
Wirth B0, 8 inch diameter
November 1969

Loam
Soil and orange-brown, sandy, silty clay.

Glacial Sand and Gravel
Sandy gravel. Gradual increase in gravel content through the top 10 ft (3.0 m); sandy below 17 ft (5.2 m). The fines content is negligible below 14 ft (4.3 m).
Gravel: fine to coarse in the top 10 ft (3.0 m), mainly fine below; frequently well rounded, flints and occasional quartz.
Sand: fawn; mainly medium becoming medium to coarse downwards.

London Clay
Brown weathered clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>43</td>
<td>+16 : 13</td>
<td>7 - 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4 : 30</td>
<td>11 - 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 - 17</td>
</tr>
<tr>
<td>Sand</td>
<td>54</td>
<td>-4+1 : 18</td>
<td>17 - 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/2 : 32</td>
<td>20 - 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1/2+1/16 : 4</td>
<td>23 - 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 - 29</td>
</tr>
<tr>
<td>Fines</td>
<td>3</td>
<td>-1/16 : 3</td>
<td>29 - 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32 - 33</td>
</tr>
</tbody>
</table>
Surface level (+35.1 m) +115 ft*
Water struck at (+32.6 m) +107 ft
Wirth B0, 8 inch diameter
November 1969

Overburden (2.7 m) 9 ft
Mineral (5.5 m) 18 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(m) ft</td>
</tr>
<tr>
<td>Loam</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.7) 9</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravel. Sandy in the top 6 ft (1.8 m), becoming gravelly below and then more sandy again towards the base. Fines are absent below 15 ft (4.6 m). Gravel: fine, with traces of coarse, subrounded flints and quartz in the top 6 ft (1.8 m); fine and coarse, sub-angular to subrounded flints and quartz below. Sand: grey to greyish-brown, medium with some coarse.</td>
</tr>
<tr>
<td></td>
<td>(5.5) 18</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay.</td>
</tr>
<tr>
<td></td>
<td>(0.9+) 3+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>36</td>
<td>+16 : 16</td>
<td>9 - 12</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4 : 20</td>
<td>12 - 15</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 - 18</td>
<td>0</td>
</tr>
<tr>
<td>Sand</td>
<td>63</td>
<td>-4+1 : 13</td>
<td>18 - 21</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+ 1/2 : 44</td>
<td>21 - 24</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/16 : 6</td>
<td>24 - 27</td>
<td>0</td>
</tr>
<tr>
<td>Fines</td>
<td>1</td>
<td>-1/16 : 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+33.2 m) +109 ft
Water struck at (+30.2 m) +99 ft
Wirth Bl, 8 inch diameter
May 1970

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>(1.5) 5</td>
</tr>
<tr>
<td>(1.5) 5</td>
<td>25</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>(5.5) 18</td>
</tr>
<tr>
<td>Gravel: fine and coarse; subangular to sub-rounded flint and quartz.</td>
<td></td>
</tr>
<tr>
<td>Sand: grey, medium with coarse and some fine.</td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>(0.6+) 2+</td>
</tr>
<tr>
<td>Blue clay.</td>
<td>(7.6) 25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fines</td>
<td>Sand</td>
</tr>
<tr>
<td>Gravel 50</td>
<td>+16 : 21</td>
<td>5 - 8</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>-16+4 : 29</td>
<td>8 - 11</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>11 - 14</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>Sand 44</td>
<td>-4+1 : 10</td>
<td>14 - 17</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1+1/4 : 27</td>
<td>17 - 20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1/4+1/16 : 7</td>
<td>20 - 23</td>
<td>4</td>
</tr>
<tr>
<td>Fines 6</td>
<td>-1/16 : 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+32.9 m) +108 ft
Water struck at (+30.2 m) +99 ft
Wirth B1, 8 inch diameter
February 1970

Loam
Soil and brown sandy clay.

Glacial Sand and Gravel
Sandy gravel. 'Clayey' near the surface, with thin greenish-grey bands of sandy clay occurring between 7 ft (2.1 m) and 10 ft (3.0 m).
Gravel: fine and coarse (some approaching cobble size) becoming finer towards base; subangular to rounded flint with occasional rounded quartz.
Sand: brown, medium with coarse and some fine; subangular to subrounded quartz and flint.

London Clay
Blue clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel 41</td>
<td>+16</td>
<td>18</td>
<td>4 - 7</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>23</td>
<td>7 - 10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 - 13</td>
<td>7</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>10</td>
<td>13 - 16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>35</td>
<td>15 - 19</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fines</td>
<td>7</td>
<td>-1/16</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>4.6</td>
<td>15</td>
</tr>
</tbody>
</table>

Overburden (1.2 m) 4 ft
Mineral (4.6 m) 15 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>0.9+</td>
<td>3+</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+35.4 m) +116 ft*
Water struck at (+32.3 m) +106 ft
Wirth B0, 8 inch diameter
January 1970

Carrington's Farm
Block B

Overburden (2.1 m) 7 ft
Mineral (6.4 m) 21 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>ft</td>
</tr>
<tr>
<td>(0.9)</td>
<td>3</td>
</tr>
<tr>
<td>(1.2)</td>
<td>4</td>
</tr>
<tr>
<td>(6.4)</td>
<td>21</td>
</tr>
</tbody>
</table>

Loam
Soil and brown clayey silt with some sand and traces of gravel.

(0.9) 3 (0.9) 3

Brown sandy clay with gravel.

(1.2) 4 (2.1) 7

Glacial Sand and Gravel
'Clayey' pebbly sand. Gravel content is highest in the basal 3 ft (0.9 m), where there are occasional cobbles, and is reduced to a trace between 22 ft (6.2 m) and 25 ft (7.6 m). 'Clayey' in the top 3 ft (0.9 m) and again in the middle.

Sand: yellowish-brown becoming buff below 16 ft (4.9 m); medium to fine in the top 3 ft (0.9 m), mainly medium below, becoming finer from 19 ft (5.8 m) and coarser in the bottom 3 ft (0.9 m).

Gravel: fine to coarse; subangular to subrounded flints, and occasional quartz, with quartzites towards the base.

London Clay
Blue clay, weathered brown for a few inches below the surface.

(0.9+) 3+ (9.4) 31

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>%</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td></td>
<td>Fines</td>
<td>Sand</td>
<td>Gravel</td>
</tr>
<tr>
<td>17</td>
<td>+16</td>
<td></td>
<td>13</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td></td>
<td>7</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>74</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td></td>
<td>19</td>
<td>51</td>
</tr>
<tr>
<td>73</td>
<td>-4+1</td>
<td></td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td></td>
<td>10</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>-1/16+1/16</td>
<td></td>
<td>4</td>
<td>93</td>
</tr>
<tr>
<td>Fines</td>
<td></td>
<td></td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>-1/16</td>
<td></td>
<td>2</td>
<td>67</td>
</tr>
</tbody>
</table>
Surface level (+36.9 m) +121 ft
Water not struck
Wirth Bl, 8 inch diameter
February 1970

Loam
Soil and soft, brown, sandy clay.

Glacial Sand and Gravel
Sandy gravel. Gravel content highest in the top 3 ft (0.9 m). 'Clayey' between 8 ft (2.4 m) and 11 ft (3.4 m).
Sand: brown; subangular to subrounded quartz with some flint; fine to medium in the top 3 ft (0.9 m); medium with coarse below.
Gravel: fine and coarse in the top 3 ft (0.9 m), mostly fine below; subangular to rounded flints with occasional rounded quartz.

London Clay
Blue clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>+16</td>
<td>5 - 8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>8 - 11</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 - 14</td>
<td>8</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>14 - 17</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>17 - 20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>-1/4+1/16</td>
<td>20 - 23</td>
<td>6</td>
</tr>
<tr>
<td>Fines</td>
<td>8</td>
<td>-1/16</td>
<td></td>
</tr>
</tbody>
</table>

40
Surface level (+35.4 m) +116 ft
Water struck at (+31.4 m) +103 ft
Wirth B1, 8 inch diameter
February 1970

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>Overburden (4.0 m)</td>
<td>13 ft</td>
</tr>
<tr>
<td>Mineral (3.7 m)</td>
<td>12 ft</td>
</tr>
<tr>
<td>Bedrock (0.9 m+)</td>
<td>3 ft+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil and brown sandy clay.</th>
<th>(4.0)</th>
<th>13</th>
<th>(4.0)</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pebblly sand. Sand: brown to yellowish-brown; mostly subrounded quartz with some subangular to subrounded flint; mainly medium. Gravel: mostly fine; subangular to rounded flints becoming increasingly rounded with depth, and some rounded quartz.</td>
<td>(3.7)</td>
<td>12</td>
<td>(7.6)</td>
<td>25</td>
</tr>
<tr>
<td>Blue clay.</td>
<td>(0.9+)</td>
<td>3+</td>
<td>(8.5)</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>+16</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>16</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>25</td>
</tr>
<tr>
<td>Fines</td>
<td>-1/16</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fines</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>
Surfase level (+34.1 m) +112 ft
Water struck at (+32.0 m) +105 ft
Wirth B0, 8 inch diameter
November 1969

Loam
Soil and clay with gravel

Glacial Sand and Gravel
Sandy gravel. Becoming increasingly sandy with depth except for relatively gravelly band between 22 ft (6.7 m) and 25 ft (7.6 m).
Gravel: fine to coarse; subangular to subrounded flints with subrounded quartzites and quartz.
Sand: yellowish-brown; medium.

London Clay
Blue clay, weathered brown in the top few inches.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>35</td>
<td>7 - 10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>+16</td>
<td>10 - 13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>13 - 16</td>
<td>0</td>
</tr>
<tr>
<td>Sand</td>
<td>65</td>
<td>16 - 19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-4+1</td>
<td>19 - 22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>22 - 25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-1/4+1/16</td>
<td>25 - 28</td>
<td>0</td>
</tr>
<tr>
<td>Fines</td>
<td>0</td>
<td>28 - 31</td>
<td>0</td>
</tr>
</tbody>
</table>
Surface level (+35.7 m) +117 ft
Water struck at (+34.0 m) +112 ft
Shell and Auger, 6 inch diameter
December 1970

<table>
<thead>
<tr>
<th>Soil/Gravel Type</th>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and pale grey-brown and red-brown mottled clay, with silt and sand and traces of gravel.</td>
<td>1.7</td>
<td>(5.5)</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Clayey, brown quartz sand with occasional pebbles of up to 60 mm diameter.</td>
<td>0.5</td>
<td>(1.5)</td>
</tr>
<tr>
<td>(a) Sandy gravel. Less sandy and more 'clayey' towards base. Gravel: mainly fine, but with some cobbles towards base; rounded flints and quartz with some quartzite; iron-stained below 3.0 m (10 ft). Sand: medium to coarse, becoming coarser downwards; mainly quartz with some flint.</td>
<td>1.8</td>
<td>(5)</td>
<td></td>
</tr>
<tr>
<td>Thinly banded grey and orange or yellow-brown clayey silt passing into blue-grey micaceous silt at 4.2 m (14 ft), the latter becoming pebbly in the bottom 0.2 m (0.5 ft).</td>
<td>2.2</td>
<td>(7)</td>
<td></td>
</tr>
<tr>
<td>(b) Sandy gravel. Gravel: mostly fine, with some coarse and a few cobbles; flint with occasional quartz and quartzite; mostly rounded pebbles with some subrounded and sub-angular fragments also. Sand: medium with some coarse; quartz and flint; dark brown, becoming paler downwards with greenish-grey sandy clay band at about 6.8 m (22.5 ft) depth.</td>
<td>1.7</td>
<td>(5.5)</td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>Blue clay, weathered brown in top 0.2 m (0.5 ft).</td>
<td>0.8+</td>
<td>(2.5+)</td>
</tr>
</tbody>
</table>

Mean (a) + (b)

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel 43</td>
<td>+64</td>
<td>2.2 - 3.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-64-16</td>
<td>3.2 - 3.8</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>Mean</td>
<td>7</td>
</tr>
<tr>
<td>Sand 52</td>
<td>-4+1</td>
<td>6.0 - 7.0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>7.0 - 7.7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>Mean</td>
<td>3</td>
</tr>
<tr>
<td>Fines 5</td>
<td>-1/16</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
TM 02 NE 5
0661 2768 Near Bromely Cross Block B

Surface level (+36.9 m) +121 ft
Water not struck
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td></td>
</tr>
<tr>
<td>Soil and yellowish-brown, sandy clay with streaks of blue silt.</td>
<td>(3.4) 11</td>
</tr>
<tr>
<td>?Glacial Sand and Gravel</td>
<td>(2.1) 7</td>
</tr>
<tr>
<td>Yellowish-brown, very sandy clay.</td>
<td>(5.5) 18</td>
</tr>
<tr>
<td>London Clay</td>
<td></td>
</tr>
<tr>
<td>Blue clay weathered brown on the surface and for a few inches below.</td>
<td>(0.9+) 3+</td>
</tr>
</tbody>
</table>

Waste (5.5 m) 18 ft
Bedrock (0.9 m+) 3 ft+

TM 02 NE 6
0619 2694 Near Collierswood Farm Block B

Surface level (+35.7 m) +117 ft
Water struck at (+32.6 m) +107 ft
Wirth B0, 8 inch diameter
December 1969

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td></td>
</tr>
<tr>
<td>Soil and brown sandy clay.</td>
<td>(2.7) 9</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>(0.9) 3</td>
</tr>
<tr>
<td>Pebbly sand.</td>
<td></td>
</tr>
<tr>
<td>Sand: yellow; medium with coarse.</td>
<td>(3.7) 12</td>
</tr>
<tr>
<td>Gravel: fine and coarse; mostly sub-angular flints and quartz.</td>
<td></td>
</tr>
<tr>
<td>Sandy clay with gravel giving way to clayey gravel for 1 ft (0.3 m) at the bottom.</td>
<td>(1.2) 4</td>
</tr>
<tr>
<td>London Clay</td>
<td></td>
</tr>
<tr>
<td>Brown weathered clay, passing down into fresh blue clay.</td>
<td>(0.9+) 3+</td>
</tr>
</tbody>
</table>

Overburden (2.7 m) 9 ft
Mineral (0.9 m) 3 ft
Waste (1.2 m) 4 ft
Bedrock (0.9 m+) 3 ft+

% mm Depth below surface (ft) Percentages
Gravel 22 +16 : 8 9 - 12 Fines 3 Sand 75 Gravel 22
-16+4 : 14

Sand 75 -4+1 : 15
-1+1/2 : 52
-1+1/16 : 8

Fines 3 -1/16 : 3
TM 02 NE 7

Near Parsonage Farm
Block D

<table>
<thead>
<tr>
<th>Surface level (+33.5 m)</th>
<th>110 ft</th>
<th>Waste (6.4 m)</th>
<th>21 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water struck at (+29.0 m)</td>
<td>95 ft</td>
<td>Bedrock (0.9 m+)</td>
<td>3 ft+</td>
</tr>
<tr>
<td>Wirth B1, 8 inch diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February 1970</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and brown silty clay and sandy clay.</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravel.</td>
</tr>
<tr>
<td></td>
<td>Gravel: fine with coarse; subangular to rounded flint and occasional rounded quartz.</td>
</tr>
<tr>
<td></td>
<td>Sand: brown; medium and some coarse; subangular to subrounded quartz and flint.</td>
</tr>
<tr>
<td>London Clay</td>
<td>Blue clay.</td>
</tr>
</tbody>
</table>

TM 02 NE 8

Near Hungerdowns
Block C

<table>
<thead>
<tr>
<th>Surface level (+36.9 m)</th>
<th>121 ft</th>
<th>Overburden (5.2 m)</th>
<th>17 ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water struck at (+30.8 m)</td>
<td>101 ft</td>
<td>Mineral (4.6 m)</td>
<td>15 ft</td>
</tr>
<tr>
<td>Wirth B0, 8 inch diameter</td>
<td></td>
<td>Bedrock (0.9 m+)</td>
<td>3 ft+</td>
</tr>
<tr>
<td>December 1969</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Made ground, soil and brown sandy clay.</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Clay with gravel.</td>
</tr>
<tr>
<td></td>
<td>'Clayey' pebbly sand. Fines present throughout, increasing in quantity towards the base.</td>
</tr>
<tr>
<td></td>
<td>Sand: yellow to yellowish-brown; mainly medium with some coarse.</td>
</tr>
<tr>
<td></td>
<td>Gravel: mostly fine grade; subrounded flints and quartz.</td>
</tr>
<tr>
<td>London Clay</td>
<td>Blue clay, weathered brown at the top, with thin peat layer separating it from the overlying sand.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>19</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>69</td>
<td>-4+1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/4</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1/4+1/16</td>
<td>7</td>
</tr>
<tr>
<td>Fines</td>
<td>12</td>
<td>-1/16</td>
<td>12</td>
</tr>
</tbody>
</table>
Surface level (+36.0 m) +118 ft
Water struck at +32.0 m (+105 ft)
Shell and Auger, 6 inch diameter
December 1970

Topsoil and made ground.

Glacial Sand and Gravel
- Sandy gravel, consisting of:
 - Gravel: mainly fine; subangular to sub-rounded brown and red flints, with rounded quartzites.
 - Sand: medium with coarse; brown.

- Yellow-brown, laminated, silty sand, becoming blue-grey with carbonaceous material, and then dark brown with occasional flints and quartzite below 6.9 m (22.5 ft).

London Clay
- Blue clay, weathered brown in top 0.6 m (2 ft).

Mean (a) + (b)

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel 41</td>
<td>+16</td>
<td>13 (a)</td>
<td>1.1 - 2.1</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>28</td>
<td>2.1 - 3.1</td>
</tr>
<tr>
<td></td>
<td>3.1 - 4.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sand 57</td>
<td>-4+1</td>
<td>19</td>
<td>4.1 - 4.5</td>
</tr>
<tr>
<td></td>
<td>-1+1/8</td>
<td>33</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>5</td>
<td>7.7 - 8.7</td>
</tr>
<tr>
<td>Fines 2</td>
<td>-1/16</td>
<td>2</td>
<td>8.7 - 9.1</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Thickness Depth
- Overburden: 1.1 m (3.5 ft)
- Mineral: 3.4 m (11 ft)
- Waste: 3.2 m (10.5 ft)
- Mineral: 1.4 m (4.5 ft)
- Bedrock: 0.8 m+ (2.5 ft+)

Fines: 2 -1/16
- Mean: 2 | 52 | 46
Near Carrington Farm Block C

<table>
<thead>
<tr>
<th>Soil and Loam</th>
<th>Soil on grey silty clay.</th>
<th>(2.0)</th>
<th>6.5</th>
<th>(2.0)</th>
<th>6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravelly clay.</td>
<td>(1.1)</td>
<td>3.5</td>
<td>(3.0)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Pebbly sand. Becoming more gravelly with depth. Sand: yellowish-brown; medium with a little coarse and fine; subangular to subrounded quartz and flint. Gravel: mostly fine near the top and the bottom; fine and coarse between; flint and occasional quartz; subangular to subrounded in the top 9 ft (2.7 m); subangular to rounded below.</td>
<td>(4.3)</td>
<td>14</td>
<td>(7.3)</td>
<td>24</td>
</tr>
<tr>
<td>London Clay</td>
<td>Blue clay.</td>
<td>(0.9+)</td>
<td>3+</td>
<td>(8.2)</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel 23</td>
<td>+16</td>
<td>10</td>
<td>10 - 13</td>
<td>8</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>13</td>
<td>13 - 16</td>
<td>7</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16 - 19</td>
<td>8</td>
<td>69</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>13</td>
<td>19 - 22</td>
<td>9</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>47</td>
<td>22 - 24</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>-1/2+1/16</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td></td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+32.0 m) +105 ft
Water struck at (+27.7 m) +91 ft
Wirth B0, 8 inch diameter
December 1969

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overburden (3.7 m)</td>
<td>12 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mineral (4.3 m)</td>
<td>14 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrock (0.9 m+)</td>
<td>3 ft+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and brown sandy clay.</td>
<td>(2.7)</td>
<td>9</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravel. Very gravelly in the bottom 2 ft (0.6 m). Fines virtually absent below 15 ft (4.6 m). Gravel: fine with coarse; subangular to subrounded flints and occasional quartz. Sand: pale yellowish-brown mostly medium increasingly coarse in the bottom 5 ft (1.5 m).</td>
<td>(4.3)</td>
<td>14</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay.</td>
<td>(0.9+)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>12 - 15</td>
</tr>
<tr>
<td></td>
<td>15 - 18</td>
</tr>
<tr>
<td></td>
<td>18 - 21</td>
</tr>
<tr>
<td>Sand</td>
<td>21 - 24</td>
</tr>
<tr>
<td></td>
<td>24 - 26</td>
</tr>
<tr>
<td>Fines</td>
<td>2 - 1/16</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Surface level (+31.4 m) +103 ft*
Water struck at (+26.8 m) +88 ft
Wirth B30, 8 inch diameter
December 1969

Overburden (2.7 m) 9 ft
Mineral (4.9 m) 16 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>?Glacial Sand and Gravel</td>
<td>Soil and brown sandy clay.</td>
</tr>
<tr>
<td>(2.7)</td>
<td>9</td>
</tr>
<tr>
<td>(2.7)</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Glacial Sand and Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy gravel. Some cobble size material present in places. Fines present throughout; 'Clayey' between 15 ft (4.6 m) and 18 ft (5.5 m). Gravel: mostly fine at the top, fine and coarse below; subangular to subrounded flints with occasional quartz and calcareous pebbles. Sand: yellowish-brown; mostly medium with coarse, but fine to medium from 18 ft (5.5 m) to 21 ft (6.4 m).</td>
</tr>
<tr>
<td>(4.9)</td>
</tr>
<tr>
<td>(7.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>London Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue clay, weathered brown in the top few inches.</td>
</tr>
<tr>
<td>(0.9+)</td>
</tr>
<tr>
<td>(8.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>32+64</td>
<td>9 - 12</td>
</tr>
<tr>
<td>-64+16</td>
<td>12 - 15</td>
</tr>
<tr>
<td>-16+4</td>
<td>15 - 18</td>
</tr>
<tr>
<td></td>
<td>18 - 21</td>
</tr>
<tr>
<td>61-4+1</td>
<td>21 - 24</td>
</tr>
<tr>
<td>-1+1/2</td>
<td>24 - 25</td>
</tr>
<tr>
<td>-3/4+1/16</td>
<td>10</td>
</tr>
</tbody>
</table>

| Fines | 7 |
| -1/16 | 7 |
Surface level (+36.6 m) +120 ft
Water struck at (+30.4 m) +100 ft
Wirth B0, 8 inch diameter
December 1969

Loam
Soil and brown silty clay.

Glacial Sand and Gravel
Dark brown 'very clayey' sand with some gravel.

Pebbly sand. Gravelly in top 6 ft (1.8 m); very sandy below but becoming gravelly again at bottom. 'Clayey' between 14 ft (4.3 m) and 17 ft (5.2 m).
Gravel: fine with coarse layer at base; subangular to subrounded flints, often stained, with subordinate quartz and quartzites.
Sand: rust brown to yellowish-brown; medium with coarse down to 17 ft (5.2 m); medium or fine to medium below.

London Clay
Brown weathered clay passing down into fresh blue clay

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel 18</td>
<td>18</td>
<td>16</td>
<td>11 - 14</td>
<td>Fines 8 70 22</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>5</td>
<td>14 - 17</td>
<td>Sand 13 64 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17 - 20</td>
<td>Gravel 0 94 6</td>
</tr>
<tr>
<td>Sand 78</td>
<td>-4+1</td>
<td>10</td>
<td>20 - 23</td>
<td>Fines 1 94 5</td>
</tr>
<tr>
<td></td>
<td>-1+3</td>
<td>58</td>
<td>23 - 26</td>
<td>Sand 3 89 8</td>
</tr>
<tr>
<td></td>
<td>-1/4+1/16</td>
<td>10</td>
<td>26 - 29</td>
<td>Gravel 5 87 8</td>
</tr>
<tr>
<td>Fines 4</td>
<td>-1/16</td>
<td>4</td>
<td>29 - 32</td>
<td>No grading available</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32 - 35</td>
<td>64 13 26 28 26 50</td>
</tr>
</tbody>
</table>
TM 02 NE 14 0835 2922 Lower Barn Block C

Surface level (+35.4 m) +116 ft
Water struck at +32.6 m (+107 ft)
Pilcon Shell, 6 inch diameter
December 1970

Overburden 1.6 m (5 ft)
Mineral 8.5 m (28 ft)
Bedrock 0.5 m+ (1.5 ft+)

Thickness Depth
(m) ft (m) ft

Topsoil and made ground.
0.7 (2.5) 0.7 (2.5)

Loam
Silty and clayey sand with some gravel.
Sand orange-brown in colour; mainly medium; rounded to subangular quartz.
Gravel composed of fine grade, rounded to subangular flint and quartz.
0.9 (3) 1.6 (5)

Glacial Sand and Gravel
Sandy gravel. Gravelly down to 6.6 m (21.5 ft), becoming very sandy below.
Gravel: mainly fine with some coarse and a few cobbles down to 6.6 m (21.5 ft), traces only of fine to coarse below;
rounded, subrounded and subangular flint with subordinate quartz and quartzite.
Gravelly down to 6.6 m (21.5 ft), becoming fine with medium below; brown to orange-brown colour; thin, pale grey, clay band at about 8.5 m (28 ft).
8.5 (28) 10.1 (33)

London Clay
Blue-grey, stiff clay.
0.5+ (1.5+) 10.6 (35)

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (m)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>30</td>
<td>+64</td>
<td>1</td>
<td>1.6 - 2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-64+16</td>
<td>10</td>
<td>2.6 - 3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>19</td>
<td>3.6 - 4.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.6 - 5.6</td>
<td>1</td>
<td>37</td>
</tr>
<tr>
<td>Sand</td>
<td>68</td>
<td>-4+1</td>
<td>10</td>
<td>5.6 - 6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4+1/4</td>
<td>33</td>
<td>6.6 - 7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4+1/16</td>
<td>25</td>
<td>7.6 - 8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.6 - 9.6</td>
<td>2</td>
<td>76</td>
</tr>
<tr>
<td>Fines</td>
<td>2</td>
<td>-1/16</td>
<td>2</td>
<td>9.6 - 10.1</td>
</tr>
</tbody>
</table>
Surface level (+34.4 m) +113 ft*
Water struck at (+31.7 m) +104 ft
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and brown, sandy clay.</td>
<td>(2.7)</td>
<td>9</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravel. Very sandy near top and gravelly between 24 ft (7.3 m) and 27 ft (8.2 m). Gravel: fine subangular flint and quartz, with coarse, subangular to subrounded flint, the latter approaching cobble size between 24 ft (7.3 m) and 27 ft (8.2 m), where coarse gravel is predominant. Sand: reddish-brown; medium, with some coarse.</td>
<td>(6.4)</td>
<td>21</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown, weathered clay, passing down into fresh blue clay.</td>
<td>(0.9+)</td>
<td>3+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>40</td>
<td>+16</td>
<td>9 - 12</td>
<td>8</td>
<td>75</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>12 - 15</td>
<td>2</td>
<td>53</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15 - 18</td>
<td>0</td>
<td>67</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>57</td>
<td>-4+1</td>
<td>18 - 21</td>
<td>4</td>
<td>57</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/2</td>
<td>21 - 24</td>
<td>0</td>
<td>63</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/16</td>
<td>24 - 27</td>
<td>0</td>
<td>33</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 - 30</td>
<td>4</td>
<td>58</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>3</td>
<td>-1/16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+32.0 m) +105 ft
Water struck at (+30.5 m) +100 ft
Wirth B0, 8 inch diameter
February 1970

Soil and subsoil

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacial Sand</td>
<td>Sandy gravel. Most gravelly between 22 ft (6.7 m) and 25 ft (7.6 m). Fines</td>
</tr>
<tr>
<td></td>
<td>notable in top 3 ft (0.9 m). Gravel: varying amounts of fine and coarse;</td>
</tr>
<tr>
<td></td>
<td>subangular to rounded flint with subrounded to rounded quartzite and quartz.</td>
</tr>
<tr>
<td></td>
<td>Sand: yellowish-brown and brown; medium with fine and coarse becoming</td>
</tr>
<tr>
<td></td>
<td>medium with coarse below 19 ft (5.8 m); subangular to subrounded quartz and</td>
</tr>
<tr>
<td></td>
<td>subangular flint.</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay, passing down into fresh blue clay.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness Depth</th>
<th>Overburden (1.2 m) 4 ft</th>
<th>Mineral (7.3 m) 24 ft</th>
<th>Bedrock (0.9 m+) 3 ft+</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m) ft</td>
<td>(1.2) 4</td>
<td>(7.3) 24</td>
<td>(8.5) 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>% mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>36</td>
</tr>
<tr>
<td>-16+4</td>
<td>: 13</td>
</tr>
<tr>
<td>-16+4</td>
<td>: 23</td>
</tr>
<tr>
<td>Sand</td>
<td>60</td>
</tr>
<tr>
<td>-4+1</td>
<td>: 12</td>
</tr>
<tr>
<td>-1+1/4</td>
<td>: 38</td>
</tr>
<tr>
<td>-1+1/4</td>
<td>: 10</td>
</tr>
<tr>
<td>Fines</td>
<td>4</td>
</tr>
<tr>
<td>-1/16</td>
<td>: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>4 - 7</td>
<td>10</td>
</tr>
<tr>
<td>7 - 10</td>
<td>6</td>
</tr>
<tr>
<td>10 - 13</td>
<td>2</td>
</tr>
<tr>
<td>13 - 16</td>
<td>3</td>
</tr>
<tr>
<td>16 - 19</td>
<td>3</td>
</tr>
<tr>
<td>19 - 22</td>
<td>1</td>
</tr>
<tr>
<td>22 - 25</td>
<td>3</td>
</tr>
<tr>
<td>25 - 28</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>53</td>
</tr>
</tbody>
</table>

53
Opposite Great Bromley Hall

Surface level (+30.5 m) +100 ft
Water struck at (+26.5 m) +87 ft
Wirth B0, 8 inch diameter
December 1969

Glacial Sand and Gravel
Soil and brown clay.

Glacial Sand and Gravel
Sandy gravel. 'Very clayey' between 22 ft (6.7 m) and 25 ft (7.8 m).
Gravel: mainly fine, becoming fine to coarse at base; subangular to sub-rounded flints.
Sand: rust brown to yellowish-brown; coarse with medium becoming mainly medium below.

Very silty sand with some gravel.

London Clay
Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel 31</td>
<td>+16</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>21</td>
</tr>
<tr>
<td>Sand 61</td>
<td>-4+1</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>3</td>
</tr>
</tbody>
</table>

Fines 8 -1/16 : 8
TM 02 NE 18
0849 2533
Near Hamilton Lodge
Block G

Surface level (+34.7 m) +114 ft
Water struck at (+31.1 m) +102 ft
Wirth B0, 8 inch diameter
December 1969

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam 1.2</td>
<td>12</td>
</tr>
<tr>
<td>Glacial Sand 0.9</td>
<td>15</td>
</tr>
<tr>
<td>London Clay 0.9</td>
<td>18</td>
</tr>
</tbody>
</table>

Loam — Soil and brown clay with flint gravel.
Glacial Sand — Very clayey, fine sand.
London Clay — Brown weathered clay, passing down into fresh, blue clay.

TM 02 NE 19
0966 2958
Near Hollylodge Farm
Block C

Surface level (+34.4 m) +113 ft
Water struck at (+31.7 m) +104 ft
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam 2.1</td>
<td>7</td>
</tr>
<tr>
<td>Glacial Sand 5.8</td>
<td>26</td>
</tr>
<tr>
<td>London Clay 0.9</td>
<td>18</td>
</tr>
</tbody>
</table>

Loam — Soil and brown sandy clay.
Glacial Sand — Sandy gravel. Becoming increasingly gravelly with depth. Fines content appreciable throughout. Gravel: fine with a little coarse; mainly rounded to subrounded with some subangular; quartz with some flint. Sand: off-white to greyish-brown; medium with coarse.
London Clay — Brown weathered clay, passing down into fresh, blue clay.

% mm Depth below surface (ft) Percentages
Gravel 35 +16 : 7 7 - 10 Fines 6 47 47
-16+4 : 18 10 - 16 No grading available
-16+2 : 19 13 - 16
-16+1 : 13 19 - 22
Sand 50 -4+1 : 18 16 - 19 9 59 32
-1+1/2 : 36 19 - 22 8 58 49
-1+1/16 : 22 19 - 22
-1 5 5 4 47 47
Fines 5 -1/16 : 5 22 - 25

55
Surface level (+32.6 m) +107 ft
Water struck at (+29.9 m) +98 ft
Wirth B0, 8 inch diameter
November 1969

Soil and made ground.

Glacial Sand and Gravel (a) Pebbly sand. Some fines present through- (4.3) 14
Gravel: fine, subangular quartz and
flints, with occasional coarse;
subangular to subrounded flints.

Sand: reddish-brown; medium with
course and some fine.

Red Crag (b) Sand.
Gravel: almost absent except for traces
of large shell fragments.

Sand: grey; mainly medium but with
substantial proportions of fine and
course; quartz intermixed with
comminuted shell debris.

London Clay
Blue clay.

<table>
<thead>
<tr>
<th>Depth below Surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fines</td>
<td>Sand</td>
</tr>
<tr>
<td>(a) Gravel 25</td>
<td></td>
</tr>
<tr>
<td>+16</td>
<td>6</td>
</tr>
<tr>
<td>-16+4</td>
<td>19</td>
</tr>
<tr>
<td>Sand 72</td>
<td></td>
</tr>
<tr>
<td>-4+1</td>
<td>18</td>
</tr>
<tr>
<td>-1+1/16</td>
<td>42</td>
</tr>
<tr>
<td>Fines 3</td>
<td>-1/16</td>
</tr>
</tbody>
</table>

(b) Gravel 5
Sand 93
Fines 2

No grading available
Surface level (+33.2 m) +109 ft
Water struck at (+30.8 m) +101 ft
Wirth B1, 8 inch diameter
February 1970

Overburden (1.2 m) 4 ft
Mineral (4.3 m) 14 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overburden</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Mineral</td>
<td>4.3</td>
<td>14</td>
</tr>
<tr>
<td>Bedrock</td>
<td>0.9</td>
<td>3</td>
</tr>
</tbody>
</table>

Soil and brown sandy clay.	(1.2)	4
Sandy gravel. Fines content highest in uppermost 6 ft (1.8 m).	(4.3)	14
Gravel: fine with traces of coarse; subangular to rounded flints and occasional quartz.		
Sand: yellowish-brown; medium with some fine and coarse; subangular to subrounded quartz and occasional flint.	(5.5)	18

| London Clay | Blue clay. | (0.9+) | 3+ | (6.4) | 21 |

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 +16</td>
<td>4 - 7</td>
<td>10</td>
<td>66</td>
<td>24</td>
</tr>
<tr>
<td>-16+4</td>
<td>7 - 10</td>
<td>10</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>66 -4+1</td>
<td>13 - 16</td>
<td>4</td>
<td>69</td>
<td>27</td>
</tr>
<tr>
<td>-1+1/2</td>
<td>16 - 18</td>
<td>3</td>
<td>71</td>
<td>26</td>
</tr>
<tr>
<td>-1/4+1/16</td>
<td>16 - 18</td>
<td>6</td>
<td>61</td>
<td>33</td>
</tr>
<tr>
<td>7 -1/16</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

57
TM 02 NE 22 0986 2677 Near Sparling's Hall Block G
Surface level (+37.5 m) +123 ft
Water struck at (+32.6 m) +107 ft
Wirth B0, 8 inch diameter
November 1969

Thickness Depth
(m) ft (m) ft

Loam Soil and brown, streaky, sandy clay. (2.1) 7 (2.1) 7

London Clay Brown weathered clay, passing down into fresh blue clay. (0.9+) 3+ (7.0) 23

No grading information available

TM 02 NE 23 0975 2612 Near 'The Chase' Block G
Surface level (+37.5 m) +123 ft
Water struck at (+35.4 m) +116 ft
Wirth B0, 8 inch diameter
February 1970

Thickness Depth
(m) ft (m) ft

Loam Soil and brown, sandy clay with gravel. (2.1) 7 (2.1) 7

Glacial Sand and Gravel Sandy gravel. 'Clayey' in the top 3 ft (0.9 m). Gravel: fine with some coarse; angular to subrounded flint, with subrounded and rounded quartz, and traces of quartzites. Sand: brown, medium with some coarse and fine; subangular to subrounded quartz with subangular flint.

London Clay Brown, weathered clay, passing down into fresh blue clay. (0.9+) 3+ (5.8) 19

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>32</td>
<td>32</td>
<td>10</td>
<td>7 - 10</td>
</tr>
<tr>
<td></td>
<td>-16</td>
<td>16</td>
<td>22</td>
<td>10 - 13</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>4</td>
<td>36</td>
<td>13 - 16</td>
</tr>
<tr>
<td>Sand</td>
<td>59</td>
<td>59</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4+1</td>
<td>1</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>1/2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>1/16</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

58
Surface level (+35.7 m) +117 ft
Water struck at (+32.9 m) +108 ft
Wirth B 0, 8 inch diameter
February 1970

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Loam</th>
<th>Glacial Sand and Gravel</th>
<th>London Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Soil and brown silty clay.</td>
<td>'Clayey' pebbly sand. Gravel almost absent in top 3 ft (0.9 m). Gravel: fine and coarse; angular to subangular brown and black flint with subrounded quartz and quartzites. Sand: grey to brown; medium and fine; subrounded to rounded quartz with traces of angular flint.</td>
<td>Brown weathered clay, passing down into fresh blue clay.</td>
</tr>
<tr>
<td>2.7</td>
<td>(1.8) 6</td>
<td>(2.7) 9</td>
<td>(0.9+) 3+</td>
</tr>
<tr>
<td>(1.8) 6</td>
<td></td>
<td>(4.6) 15</td>
<td>(5.5) 18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
<td>Sand</td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 +16</td>
<td>3</td>
<td>6 - 9</td>
</tr>
<tr>
<td>-16+4</td>
<td>5</td>
<td>9 - 12</td>
</tr>
<tr>
<td>Sand</td>
<td>75</td>
<td>12 - 15</td>
</tr>
<tr>
<td>-4+1</td>
<td>4</td>
<td>6 - 9</td>
</tr>
<tr>
<td>-1+1/4</td>
<td>37</td>
<td>9 - 12</td>
</tr>
<tr>
<td>-1+1/16</td>
<td>34</td>
<td>12 - 15</td>
</tr>
<tr>
<td>Fines</td>
<td>17</td>
<td>-1/16</td>
</tr>
</tbody>
</table>
Surface level (+27.4 m) +90 ft*
Water struck at (+21.6 m) +71 ft
Wirth B0, 8 inch diameter
October 1969

Glacial Sand and Gravel

Soil and brown sandy clay.
Sandy gravel. Gravel content increases from traces only down to 18 ft (5.5 m) to more than 50 per cent towards base. Gravel: fine and coarse; subangular to subrounded flints and quartz, with some quartzite and traces of chalk towards the base.
Sand: yellowish-brown to brown; medium and fine down to 21 ft (6.4 m); mainly medium below.

London Clay

Brown weathered clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>+16</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>14</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1+ 1/2</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>-1/2+1/16</td>
<td>21</td>
</tr>
<tr>
<td>Fines</td>
<td>2-1/16</td>
<td>2</td>
</tr>
</tbody>
</table>

Depth below surface (ft)

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>+16</td>
<td>9 - 12</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>12 - 15</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>15 - 18</td>
</tr>
<tr>
<td></td>
<td>-1+ 1/2</td>
<td>18 - 21</td>
</tr>
<tr>
<td></td>
<td>-1/2+1/16</td>
<td>21 - 24</td>
</tr>
<tr>
<td>Fines</td>
<td>2-1/16</td>
<td>24 - 27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 - 30</td>
</tr>
</tbody>
</table>

Percentages

Fines Sand Gravel

0	99	1
4	96	0
1	93	6
2	53	45
1	46	53
4	43	53
4	44	52

Overburden (2.7 m) 9 ft
Mineral (6.4 m) 21 ft
Bedrock (0.9 m+) 3 ft+
Surface level (+22.9 m) +75 ft
Water struck at (+14.6 m) +48 ft
Wirth B0, 8 inch diameter
November 1969

Overburden (3.7 m) 12 ft
Mineral (11.9 m) 39 ft
Bedrock (0.9 m+) 3 ft+

Glacial Sand and Gravel

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.7)</td>
<td>12</td>
</tr>
<tr>
<td>(11.9)</td>
<td>39</td>
</tr>
</tbody>
</table>

Sandy gravel. Very sandy in top 3 ft (0.9 m) and between 33 ft (10.1 m) and 39 ft (11.9 m).
Gravel: fine and coarse becoming mostly fine towards base; subangular to subrounded flints with quartz and quartzites.
Sand: yellowish-brown, medium with traces of fine and coarse to 39 ft (11.9 m); brown, medium and coarse below.

London Clay

Brown weathered clay.

<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>33 - 36</td>
<td>0</td>
</tr>
<tr>
<td>36 - 39</td>
<td>1</td>
</tr>
<tr>
<td>39 - 42</td>
<td>0</td>
</tr>
<tr>
<td>42 - 45</td>
<td>3</td>
</tr>
<tr>
<td>45 - 48</td>
<td>0</td>
</tr>
<tr>
<td>48 - 51</td>
<td>0</td>
</tr>
</tbody>
</table>

Fines 1 -1/16 : 1

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>-16+4</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>15 - 18</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>18 - 21</td>
<td>2</td>
<td>42</td>
</tr>
<tr>
<td>21 - 24</td>
<td>1</td>
<td>59</td>
</tr>
<tr>
<td>24 - 27</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>27 - 30</td>
<td>0</td>
<td>59</td>
</tr>
<tr>
<td>30 - 33</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>33 - 36</td>
<td>0</td>
<td>88</td>
</tr>
<tr>
<td>36 - 39</td>
<td>1</td>
<td>88</td>
</tr>
<tr>
<td>39 - 42</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>42 - 45</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>45 - 48</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>48 - 51</td>
<td>0</td>
<td>63</td>
</tr>
</tbody>
</table>
Surface level

Surface level (+23.8 m) +78 ft
Water struck at (+18.0 m) +59 ft
Wirth B0, 8 inch diameter
November 1969

Near Donyland Wood

Overburden (4.0 m) 13 ft
Mineral (4.6 m) 15 ft
Bedrock (0.9 m+) 3 ft+

Glacial Sand and Gravel

- **Soil and brown fine clayey sand with gravel.**
 - Thickness: (4.0) ft (13)
 - Depth: (4.0) m (13)
- **Gravel.** More gravelly and less sandy with depth.
 - Gravel: fine and coarse; subrounded, with some subangular flints, quartzites and quartz.
 - Sand: grey to brown; medium with a little fine and coarse.

London Clay

Brown clay, passing down into blue clay.
- (0.9+) ft (3+)
- (9.4) m (31)

Depth below surface

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>55</td>
<td>+16</td>
<td>13 - 16</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>-16+4</td>
<td>16 - 19</td>
<td>5</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>41</td>
<td>-4+1</td>
<td>22 - 25</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>-1+1/4</td>
<td>25 - 28</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>-1/16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

62
Salarybrook Farm Block D

Surface level: (+3.7 m) +12 ft

Groundwater conditions not recorded

Wirth B0, 8 inch diameter

November 1969

<table>
<thead>
<tr>
<th>Alluvium</th>
<th>Soil and brown silt clay.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-Alluvium</td>
<td>'Very clayey' gravel.</td>
</tr>
<tr>
<td>Gravel</td>
<td>London Clay</td>
</tr>
<tr>
<td>Waste (5.2 m)</td>
<td>17 ft</td>
</tr>
<tr>
<td>Bedrock (0.9 m+)</td>
<td>3 ft+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4.3)</td>
<td>(4.3)</td>
</tr>
<tr>
<td>(0.9)</td>
<td>(5.2)</td>
</tr>
<tr>
<td>(0.9+)</td>
<td>(6.1)</td>
</tr>
</tbody>
</table>

Near Wivenhoe Lodge Block D

Surface level: (+32.2 m) +105 ft=

Water struck at (+27.7 m) +91 ft

Wirth B0, 8 inch diameter

November 1969

<table>
<thead>
<tr>
<th>Loam</th>
<th>Soil and brown silt clay.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravel. Cobble occurs between 26 ft (7.9 m) and 29 ft (8.8 m). Very gravelly between 17 ft (5.2 m) and 23 ft (7.0 m) and at base. Gravel: fine at top becoming fine to coarse below; subangular flints and occasional quartz and quartzites, with large sub-rounded flints. Sand: brown, fine and medium in top 3 ft (0.9 m); medium with some coarse below.</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay.</td>
</tr>
</tbody>
</table>

Overburden (4.3 m)	14 ft
Mineral (5.8 m)	19 ft
Bedrock (0.9 m+)	3 ft+

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3.4)</td>
<td>(3.4)</td>
</tr>
<tr>
<td>(0.9)</td>
<td>(4.3)</td>
</tr>
<tr>
<td>(5.8)</td>
<td>(10.1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth surface (ft)</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 - 17</td>
<td>2</td>
<td>68</td>
<td>30</td>
</tr>
<tr>
<td>17 - 20</td>
<td>1</td>
<td>34</td>
<td>65</td>
</tr>
<tr>
<td>20 - 23</td>
<td>5</td>
<td>42</td>
<td>53</td>
</tr>
<tr>
<td>23 - 26</td>
<td>5</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>26 - 29</td>
<td>0</td>
<td>67</td>
<td>33</td>
</tr>
<tr>
<td>29 - 32</td>
<td>0</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>32 - 33</td>
<td>0</td>
<td>44</td>
<td>56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>44</td>
</tr>
<tr>
<td>-16+4</td>
<td>25</td>
</tr>
<tr>
<td>-16</td>
<td>19</td>
</tr>
<tr>
<td>54</td>
<td>Sand</td>
</tr>
<tr>
<td>-4+1</td>
<td>9</td>
</tr>
<tr>
<td>-1+1/8</td>
<td>35</td>
</tr>
<tr>
<td>-1/8+1/16</td>
<td>10</td>
</tr>
</tbody>
</table>

Fines 2 -1/16 | 2
Surface level (+19.8 m) +65 ft
Water struck at (+16.5 m) +54 ft
Wirth B0, 8 inch diameter
October 1969

?Glacial Sand and Gravel
Soil and sand with clay and silt

Glacial Sand and Gravel
Sandy gravel. Very sandy in top 3 ft (0.9 m); gravelly below.
Gravel: subangular to subrounded flints and quartz; fine at the top, becoming fine and coarse below.
Sand: buff to brown; medium with fine and a little coarse.

London Clay
Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>41</td>
<td>+16 : 19</td>
<td>9 - 12</td>
</tr>
<tr>
<td></td>
<td>-16+4 : 22</td>
<td>12 - 15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 - 18</td>
<td>2</td>
</tr>
<tr>
<td>Sand</td>
<td>55</td>
<td>-4+1 : 7</td>
<td>18 - 21</td>
</tr>
<tr>
<td></td>
<td>-1+1/4 : 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1/16 : 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>4</td>
<td>-1/16 : 4</td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+16.8 m) +55 ft
Water struck at (+10.7 m) +35 ft
Wirth B0, 8 inch diameter
October 1969

Glacial Sand and Gravel
Soil and sand with a high organic content, Pebbly sand. Very sandy in the top 6 ft (1.8 m), becoming gravely in the middle of the deposit but less gravely again towards base.
Gravel: fine with coarse; subangular to subrounded flints and quartz; coarsest between 17 ft (5.2 m) and 23 ft (7.0 m) and from 26 ft (7.9 m) to 29 ft (8.8 m).
Sand: brown; medium with fine in the top 9 ft (2.7 m): mostly medium below.

London Clay
Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>25</td>
<td>+16</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td>Sand</td>
<td>74</td>
<td>-4+1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>57</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>-1/16+1/16</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Fines</td>
<td>1</td>
<td>-1/16</td>
<td>1</td>
</tr>
</tbody>
</table>

East Donyland Hall Block E

Overburden (2.4 m) 8 ft
Mineral (7.0 m) 23 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2.4)</td>
<td>8</td>
</tr>
<tr>
<td>(7.0)</td>
<td>23</td>
</tr>
<tr>
<td>(0.9+)</td>
<td>3+</td>
</tr>
</tbody>
</table>

65
Surface level (+22.9 m) +75 ft
Water struck at (+12.5 m) +41 ft
Wirth B0, 8 inch diameter
October 1969

?Glacial Sand and Gravel
Soil and brown sandy clay.

Glacial Sand and Gravel
Sandy gravel. A few subrounded flint cobbles occur within the top 9 ft (2.7 m). Very sandy between 20 ft (6.1 m) and 23 ft (7.0 m).
Gravel: subangular to subrounded flints and subrounded quartz with occasional quartzite and traces of chalk; mainly fine with coarse.
Sand: brown to yellowish-brown; fine to medium in the top 3 ft (0.9 m); mainly medium below.

London Clay
Brown weathered clay passing down into fresh blue clay.

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel</td>
<td>35</td>
<td>+16</td>
<td>11 - 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>14 - 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>Sand</td>
<td>63</td>
<td>-4+1</td>
<td>20 - 23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/2</td>
<td>23 - 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Fines</td>
<td>2</td>
<td>-1/16</td>
<td>32 - 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
</tbody>
</table>
Surface level (+34.1 m) +112 ft
Water struck at (+28.3 m) +93 ft
Wirth B0, 8 inch diameter
November 1969

Loam
Soil and brown silty clay.
(3.4) 11 (3.4) 11
Grey silt.
(2.4) 8 (5.8) 19

Glacial Sand and Gravel
Gravel. Very sandy at top. Increase in fines content towards base.
Gravel: fine; subrounded flints with quartz and quartzite, with some coarse; subangular to subrounded flints.
Sand: brown; medium with traces of fine and coarse in places.
(7.3) 24 (13.1) 43

London Clay
Brown weathered clay, passing down into fresh, blue clay.
(0.9+) 3+ (14.0) 46

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>+16</td>
<td>19 - 22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>22 - 25</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>25 - 28</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>Sand</td>
<td>-4+1</td>
<td>28 - 31</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>31 - 34</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-1/4+1/16</td>
<td>34 - 37</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>37 - 40</td>
<td>7</td>
<td>31</td>
</tr>
<tr>
<td>Fines</td>
<td>-1/16</td>
<td>40 - 43</td>
<td>8</td>
</tr>
</tbody>
</table>
Surface level (+35.1 m) +115 ft
Water struck at (+31.4 m) +103 ft
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and brown silty clay.</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Grey silt.</td>
<td></td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Gravel. The gravel content increases downwards at the expense of the sand.</td>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Gravel. fine and coarse; subangular flints and quartz with subrounded quartz and quartzite.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand: pale grey, medium with traces of coarse and fine.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay.</td>
<td>3+</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>% Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>51</td>
<td>16</td>
</tr>
<tr>
<td>Sand</td>
<td>49</td>
<td>-4+1</td>
</tr>
<tr>
<td>Fines</td>
<td>0</td>
<td>-1/16</td>
</tr>
</tbody>
</table>
Surface level (+25.9 m) +85 ft
Water struck at (+22.9 m) +75 ft
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Layer</th>
<th>Soil and gravel with black clay and silt.</th>
<th>Overburden (2.7 m) 9 ft</th>
<th>Mineral (3.0 m) 10 ft</th>
<th>Bedrock (0.9 m+) 3 ft+</th>
</tr>
</thead>
<tbody>
<tr>
<td>?Glacial Sand and Gravel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil and gravel with black clay and silt.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravel: Becoming more sandy and less</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gravelly with depth.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravel: fine and coarse; subangular to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>subrounded flints with subrounded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>quartz and quartzite.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand: brown; mainly medium and coarse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel</td>
<td>68</td>
<td>+16</td>
<td>9 - 12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>:</td>
<td>12 - 15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td>15 - 18</td>
<td>0</td>
</tr>
<tr>
<td>Sand</td>
<td>32</td>
<td>-4+1</td>
<td>18 - 19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>:</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>:</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Fines</td>
<td>0</td>
<td>-1/16</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Surface level (+21.3 m) +70 ft
Water struck at (+17.1 m) +56 ft
Wirth B0, 8 inch diameter
October 1969

?Glacial Sand and Gravel
Soil and sandy clay.

Glacial Sand and Gravel
Sandy gravel. 'Clayey' in the top 3 ft (0.9 m) with traces only of gravel. A few cobbles between 14 ft (4.3 m) and 17 ft (5.2 m). Gravel: mainly fine, but fine to coarse between 14 ft (4.3 m) and 20 ft (6.1 m); subangular to subrounded quartz, flint and traces of chalk, with some rounded quartz and flint. Sand: buff to brown; medium and fine for 3 ft (0.9 m) at the top; mainly medium below.

London Clay
Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>11 - 14</td>
<td>14</td>
</tr>
<tr>
<td>14 - 17</td>
<td>1</td>
</tr>
<tr>
<td>17 - 20</td>
<td>5</td>
</tr>
<tr>
<td>20 - 23</td>
<td>8</td>
</tr>
<tr>
<td>23 - 25</td>
<td>No grading available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>23</td>
<td>+16</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>: 14</td>
</tr>
<tr>
<td>Sand</td>
<td>70</td>
<td>-4+1</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>: 43</td>
</tr>
<tr>
<td></td>
<td>-1/16</td>
<td>: 20</td>
</tr>
<tr>
<td>Fines</td>
<td>7</td>
<td>-1/16</td>
</tr>
</tbody>
</table>
TM 02 SW 13 0464 2453

Near Blossomwood Farm Block D

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overburden</td>
<td>(5.5 m) 18 ft</td>
<td></td>
</tr>
<tr>
<td>Mineral</td>
<td>(4.3 m) 14 ft</td>
<td></td>
</tr>
<tr>
<td>Bedrock</td>
<td>(0.9 m+) 3 ft+</td>
<td></td>
</tr>
</tbody>
</table>

- **Surface level** (+33.2 m) +109 ft
- **Water struck at** (+26.8 m) +88 ft
- **Wirth B0**, 8 inch diameter
- **November 1969**

Stratigraphy

- **Loam**: Soil and brown clay with gravel. Gravel contaminated by a high percentage of grey silt and clay.
 - Thickness: (3.4) m, Depth: (3.4) ft

- **Glacial Sand and Gravel**: Pebble sand. 'Clayey' for 3 ft (0.9 m) at the top. Gravelly near top and base. Gravel: fine with some coarse; subangular to subrounded flints and quartz with some trace of chalk in places. Sand: brown, medium with coarse in the top 3 ft (0.9 m); greyish-brown, medium with fine below.
 - Thickness: (4.3) m, Depth: (9.8) ft

- **London Clay**: Brown weathered clay, passing down into fresh blue clay.
 - Thickness: (0.9+) m, Depth: (3+) ft

Soil and particle size distribution

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>24</td>
<td>+16</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4+1</td>
<td>9</td>
</tr>
<tr>
<td>Sand</td>
<td>73</td>
<td>-4+1</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/3</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4+1/16</td>
<td>15</td>
</tr>
<tr>
<td>Fines</td>
<td>3</td>
<td>-1/16</td>
<td>3</td>
</tr>
</tbody>
</table>
Surface level (+33.5 m) +110 ft
Water struck at (+30.2 m) +99 ft
Wirth B0, 8 inch diameter
November 1970

Loam
Soil and gravel contaminated by black clay and silt.
Grey silt.

Glacial Sand and Gravel
Sandy gravel.
Gravel: fine with some coarse; sub-angular to subrounded flints and sub-rounded quartzites and quartz.
Sand: pale brown, mostly medium.

London Clay
Brown weathered clay.

<table>
<thead>
<tr>
<th></th>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>48</td>
<td>17</td>
<td>15 - 18</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>31</td>
<td>18 - 21</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-16+</td>
<td>31</td>
<td>21 - 24</td>
<td>1</td>
</tr>
<tr>
<td>Sand</td>
<td>51</td>
<td>6</td>
<td>15 - 18</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-4+1</td>
<td>6</td>
<td>18 - 21</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1+1/2</td>
<td>36</td>
<td>21 - 24</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Block D
Overburden (4.6 m) 15 ft
Mineral (2.7 m) 9 ft
Bedrock (0.9 m+) 3 ft+
TM 02 SE 1 0558 2414 Fen Farm Block D

Surface level (+30.5 m) +100 ft
Water struck at (+20.1 m) +66 ft
Wirth B0, 8 inch diameter
November 1969

Drift
(Channel Fill?)

- Soil and brown silty clay. (6.1) 20 (6.1) 20
- Grey silt. (5.8) 19 (11.9) 39

Glacial Sand and Gravel

- Pebbly sand; brown, medium sand with scattered, fine, subrounded quartz gravel. (1.8) 6 (13.7) 45

London Clay

- Brown weathered clay passing down into fresh blue clay. (0.9+) 3+ (14.6) 48

TM 02 SE 2 0584 2314 Near Charity Farm Block F

Surface level (+30.8 m) +101 ft
Water struck at (+25.0 m) +82 ft
Wirth B0, 8 inch diameter
November 1969

Loam

- Soil and brown clay. (3.4) 11 (3.4) 11

Glacial Sand and Gravel

- Gravel and sand contaminated by clay and silt. (0.9) 3 (4.3) 14

- Sandy gravel. Becoming increasingly sandy and less gravelly from 20 ft (6.1 m) to base.
 - Gravel: fine with coarse becoming mainly fine near base; subangular to subrounded flints and subrounded quartz.
 - Sand: dark brown to pale brown; medium with coarse to 23 ft (7.0 m) becoming mostly medium below.

London Clay

- Brown weathered clay. (0.9+) 3+ (10.7) 35

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>35</td>
<td>+16 : 13</td>
<td>14 - 17</td>
<td>Fines 1, Sand 62, Gravel 37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4 : 22</td>
<td>17 - 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 - 23</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 - 26</td>
<td>0</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 - 29</td>
<td>4</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 - 32</td>
<td>1</td>
<td>61</td>
</tr>
<tr>
<td>Sand</td>
<td>64</td>
<td>-4+1 : 11</td>
<td>1</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/8 : 48</td>
<td>26 - 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1/4+1/16 : 5</td>
<td>29 - 32</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>1</td>
<td>-1/16 : 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TM 02 SE 3
0516 2197
Sunnymede Farm
Block F

- **Surface level**: (+29.3 m) +96 ft
- **Water struck at**: (+26.2 m) +86 ft
- **Wirth B0, 8 inch diameter**:
- **February 1970**

Soil and subsoil.

<table>
<thead>
<tr>
<th>Glacial Sand and Gravel</th>
</tr>
</thead>
</table>
| Gravel: Becoming increasingly gravelly and less sandy downwards.
Gravel: fine with coarse; subangular to subrounded flints with occasional quartzites.
Sand: brown; mainly medium; subangular to subrounded quart and flint.

London Clay
Blue clay.

Overburden (1.4 m)
4.5 ft
Mineral (3.7 m)
12 ft
Bedrock (0.9 m+)
3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>1.4</td>
<td>4.5</td>
</tr>
<tr>
<td>3.7</td>
<td>12</td>
</tr>
<tr>
<td>0.9+</td>
<td>3+</td>
</tr>
</tbody>
</table>

Depth below surface (ft)

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63+</td>
<td>4.5 - 7.5</td>
</tr>
<tr>
<td>-16+4</td>
<td>7.5 - 10.5</td>
</tr>
<tr>
<td>34</td>
<td>10.5 - 13.5</td>
</tr>
<tr>
<td>-4+1</td>
<td>13.5 - 16.5</td>
</tr>
<tr>
<td>3-1/16</td>
<td>16.5+</td>
</tr>
</tbody>
</table>

Percentages

<table>
<thead>
<tr>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>57</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>34</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Fines
3 -1/16 : 3
Surface level (+25.3 m) +83 ft
Water struck at (+15.5 m) +51 ft
Wirth B0, 8 inch diameter
May 1970

<table>
<thead>
<tr>
<th>Soil.</th>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacial Sand and Gravel</td>
<td>(0.3)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(10.7)</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(11.0)</td>
<td>36</td>
</tr>
</tbody>
</table>

Sandy gravel. 'Clayey' in the top 6 ft (1.8 m) and at the base. The gravel content increases with depth.
Gravel: fine at the top, becoming fine and coarse below, and mainly coarse towards the base. Subangular to rounded flints with occasional quartzites.
Sand: yellow to orange-brown; medium and fine at the top; becoming mainly medium and then medium to coarse below.

London Clay
Brown, weathered clay with blue streaks.
(0.3+)
(1+1)
(11.3)
37

<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
</tr>
<tr>
<td>+16</td>
<td>20</td>
</tr>
<tr>
<td>-16+4</td>
<td>24</td>
</tr>
<tr>
<td>-16</td>
<td>7</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>-4+1</td>
<td>10</td>
</tr>
<tr>
<td>-1+1/16</td>
<td>28</td>
</tr>
<tr>
<td>-1/16</td>
<td>12</td>
</tr>
<tr>
<td>Fines</td>
<td></td>
</tr>
<tr>
<td>-1/16</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>28</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>34</td>
</tr>
<tr>
<td>34</td>
<td>36</td>
</tr>
</tbody>
</table>
Surface level (+31.1 m) +102 ft
Water struck at (+25.3 m) +83 ft
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Description</th>
<th>Overburden (4.0 m)</th>
<th>Mineral (4.3 m)</th>
<th>Bedrock (0.9 m+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and brown silty clay.</td>
<td>4.0 ft</td>
<td>14 ft</td>
<td>3 ft+</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Gravel contaminated by excess clay and silt.</td>
<td>1.5 ft</td>
<td>4.0 ft</td>
<td>13 ft</td>
</tr>
<tr>
<td></td>
<td>Sandy gravel.</td>
<td>4.3 ft</td>
<td>8.2 ft</td>
<td>27 ft</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay.</td>
<td>0.9 ft</td>
<td>9.1 ft</td>
<td>30 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>33</td>
<td>+16: 11</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4: 22</td>
<td>1</td>
</tr>
<tr>
<td>Sand</td>
<td>65</td>
<td>-4+1: 13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/2: 46</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3+1/16: 6</td>
<td>0</td>
</tr>
<tr>
<td>Fines</td>
<td>2</td>
<td>-1/16: 2</td>
<td></td>
</tr>
</tbody>
</table>
TM 02 SE 6

Grove Farm Block D

- **Surface level** (+31.4 m) +103 ft
- **Water struck at** (+28.3 m) +93 ft
- **Wirth B0, 8 inch diameter**
- **December 1969**

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>(3.4)</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>(8.2)</td>
</tr>
<tr>
<td>London Clay</td>
<td>(0.9+)</td>
</tr>
</tbody>
</table>

Made ground, soil, and brown silty clay.

Sandy gravel. Gravelly at top becoming sandy towards centre and more gravelly again at base.

Gravel: fine with some coarse; subangular to subrounded flints and quartz, frequently iron-stained in the top 4 ft (1.2 m), and occasional, subrounded quartzite.

Sand: reddish-brown, medium and coarse to 15 ft (4.6 m); yellowish-brown, medium with some fine and coarse to 33 ft (10.1 m); silver grey medium with coarse to base.

Brown weathered clay, passing down into fresh, blue clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>33</td>
<td>11 - 12</td>
<td>8 57 35</td>
</tr>
<tr>
<td></td>
<td>+16: 11</td>
<td>12 - 15</td>
<td>3 52 45</td>
</tr>
<tr>
<td></td>
<td>-16+4: 22</td>
<td>15 - 18</td>
<td>3 63 34</td>
</tr>
<tr>
<td>Sand</td>
<td>64</td>
<td>18 - 21</td>
<td>3 74 23</td>
</tr>
<tr>
<td></td>
<td>-4+1: 13</td>
<td>21 - 24</td>
<td>4 77 19</td>
</tr>
<tr>
<td></td>
<td>-1+1/4: 42</td>
<td>24 - 27</td>
<td>1 73 26</td>
</tr>
<tr>
<td></td>
<td>-1+1/16: 9</td>
<td>27 - 30</td>
<td>3 58 29</td>
</tr>
<tr>
<td>Fines</td>
<td>3</td>
<td>30 - 33</td>
<td>3 64 34</td>
</tr>
<tr>
<td></td>
<td>-1/16: 3</td>
<td>33 - 36</td>
<td>1 63 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36 - 38</td>
<td>1 48 51</td>
</tr>
</tbody>
</table>
Near Heath Farm, Alresford

Surface level (+29.9 m) +98 ft
Water struck at (+27.7 m) +91 ft
Wirth B1, 8 inch diameter
February 1970

Overburden (1.2 m) 4 ft
Mineral (9.1 m) 30 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>Loam</td>
<td>Soil and brown sandy clay. (1.2) 4</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>Sandy gravel. 'Clayey' in the top 3 ft (9.1) 30</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>Blue clay. (0.9+) 3+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>35</td>
<td>4 - 7</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>+16</td>
<td>7 - 10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>10 - 13</td>
<td>5</td>
</tr>
<tr>
<td>Sand</td>
<td>60</td>
<td>13 - 16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>-4+1</td>
<td>16 - 19</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>19 - 22</td>
<td>3</td>
</tr>
<tr>
<td>Fines</td>
<td>5</td>
<td>22 - 25</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-1/16</td>
<td>25 - 28</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 - 31</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31 - 34</td>
<td>3</td>
</tr>
</tbody>
</table>
Surface level (+29.0 m) +95 ft
Water struck at (+24.7 m) +81 ft
Wirth B0, 8 inch diameter
May 1970

Overburden (2.4 m) 8 ft
Mineral (4.0 m) 13 ft
Bedrock (0.6 m+) 2 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>(2.4)</td>
<td>8</td>
</tr>
<tr>
<td>(4.0)</td>
<td>13</td>
</tr>
</tbody>
</table>

Loam
Soil and brown sandy clay.

Glacial Sand and Gravel
Sandy gravel.
Gravel: mainly coarse at the top, becoming finer with depth; mainly subangular to subrounded flints with some rounded flints below 17 ft (5.2 m).
Sand: grey to greyish-brown; medium with fine in the top 3 ft (0.9 m), medium with coarse below.

London Clay
Brown weathered clay.

<table>
<thead>
<tr>
<th>% mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel 25</td>
<td>+16 : 10</td>
<td>8 - 11</td>
</tr>
<tr>
<td></td>
<td>-16+4 : 15</td>
<td>11 - 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 - 17</td>
</tr>
<tr>
<td>Sand 71</td>
<td>-4+1 : 11</td>
<td>17 - 20</td>
</tr>
<tr>
<td></td>
<td>-1+1/4 : 49</td>
<td>20 - 21</td>
</tr>
<tr>
<td></td>
<td>-1+1/16 : 11</td>
<td></td>
</tr>
</tbody>
</table>

Fines 4 -1/16 : 4
Surface level (+25.3 m) +83 ft
Water struck at (+22.3 m) +73 ft
Wirth B1, 8 inch diameter
February 1970

Soil.

Glacial Sand and Gravel
Gravel. Gravel content increases downwards.
Gravel: mainly fine, becoming coarser with depth and approaching cobble size in places; subangular to subrounded flints with some subrounded quartz and traces of quartzite.
Sand: brown to yellowish-brown; mainly medium; subangular to subrounded quartz and flint.

London Clay
Brown weathered clay, passing down into fresh, bluish-grey clay.

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td>54</td>
<td>+16</td>
<td>2 - 5</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>32</td>
<td>5 - 8</td>
</tr>
<tr>
<td></td>
<td>8 - 11</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Sand</td>
<td>41</td>
<td>-4+1</td>
<td>11 - 14</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>25</td>
<td>14 - 18</td>
</tr>
<tr>
<td></td>
<td>3+1/16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>5</td>
<td>-1/16</td>
<td>5</td>
</tr>
</tbody>
</table>
TM 02 SE 10 0792 2468 Near Broughton Block G

Surface level (+31.1 m) +102 ft Overburden (2.4 m) 8 ft
Water not Mineral (1.2 m) 4 ft
Wirth B0, 8 inch diameter Bedrock (0.9 m+) 3 ft+
December 1969

Loam Soil and sandy clay with gravel.
Thickness (m) ft Depth (m) ft
2.4 8 2.4 8

Glacial Sand and Gravel Medium to coarse sand with fine to coarse gravel.
1.3 4 3.7 12

London Clay Brown weathered clay, passing down into fresh blue clay.
0.9+ 3+ 4.6 15

No grading information available

TM 02 SE 11 0734 2361 Blue Barn, Elmstead Market Block D

Surface level (+26.2 m) +86 ft Overburden (1.8 m) 6 ft
Water struck at (+22.6 m) +74 ft Mineral (3.4 m) 11 ft
Wirth B1, 8 inch diameter Bedrock (0.9 m+) 3 ft+
February 1970

Glacial Sand and Gravel Soil and brown sand with gravel, contaminated by excess clay and silt.
(1.8) 6 (1.8) 6

Pebbly sand. Band of pale blue clay between (3.4) 11 ft (3.4 m) and 12 ft (3.7 m). 'Clayey' above 11 ft (3.4 m), and more sandy from 12 ft (3.7 m) to base.
Gravel: mostly fine with traces of coarse; angular to well rounded flints with some subangular to rounded quartz.
Sand: mainly medium; subangular to sub-rounded quartz with some flint.

London Clay Blue clay.
(0.9+) 3+ (6.1) 20

Thickness (m) ft Depth (m) ft

% mm % Surface (ft) Fines Percentages
Gravel 19 +16 4 6 - 9 11 62 27
 -16+4 15 9 - 11 13 71 16
Sand 73 -4+1 11 1 ft Clay band between 11 ft and 12 ft
 -1+1 55 7 12 - 14 7 77 16
 -1+1/16 7 14 - 17 3 82 15
Fines 8 -1/16 8

81
Surface level (+31.4 m) +103 ft
Water struck at (+29.3 m) +96 ft
Wirth B0, 8 inch diameter
February 1970

<table>
<thead>
<tr>
<th>Thickness (m)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>6.1</td>
<td>20</td>
</tr>
</tbody>
</table>

?River Brickearth Soil and brown silty clay.
(Soil and brown silty clay. (1.2) 4 (1.2) 4

Glacial Sand and Gravel Sandy gravel. 'Clayey' at the top. Very gravelly at the base. Gravel: mostly fine with coarse, but mainly coarse with traces of cobble size at the bottom; subangular to rounded flints with some rounded quartz. Sand: brown to yellowish-brown; medium with some coarse and fine; mostly subangular and subrounded quartz, with some subangular flint.

London Clay Brown clay, passing down into blue clay. (0.9+) 3+ (8.2) 27

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel 26</td>
<td>+16</td>
<td>11</td>
<td>4 - 7</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>15</td>
<td>7 - 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>10 - 13</td>
</tr>
<tr>
<td>Sand 67</td>
<td>-4+1</td>
<td>10</td>
<td>13 - 16</td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>45</td>
<td>16 - 19</td>
</tr>
<tr>
<td></td>
<td>-1+1/16</td>
<td>12</td>
<td>19 - 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 - 24</td>
<td>2</td>
</tr>
<tr>
<td>Fines 7</td>
<td>-1/16</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+20.1 m) +66 ft
Water not struck
Wirth B1, 8 inch diameter
February 1970

<table>
<thead>
<tr>
<th>Glacial Sand and Gravel</th>
<th>Gravel. Becoming more gravelly and less sandy downwards. Noticeable proportion of fines present throughout. Gravel: fine; subangular to rounded flints with a little quartz. Sand: brown; medium and coarse; subangular to subrounded quartz and some flint.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td>Blue clay.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>0 - 3</td>
<td>10</td>
</tr>
<tr>
<td>3 - 6</td>
<td>9</td>
</tr>
<tr>
<td>6 - 9</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td></td>
</tr>
<tr>
<td>+16</td>
<td>11</td>
</tr>
<tr>
<td>-16+4</td>
<td>40</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td>-4+1</td>
<td>17</td>
</tr>
<tr>
<td>-1+1/2</td>
<td>19</td>
</tr>
<tr>
<td>-3+1/16</td>
<td>4</td>
</tr>
<tr>
<td>Fines</td>
<td>9</td>
</tr>
<tr>
<td>-1/16</td>
<td>9</td>
</tr>
</tbody>
</table>
Surface level (+25.3 m) +83 ft
Water struck at (+24.1 m) +79 ft
Wirth B1, 8 inch diameter
May 1970

Soil.

Glacial Sand and Gravel
Pebbly sand. Becoming more gravelly downwards.
Gravel: fine with coarse; subangular to subrounded flints with subrounded quartz.
Sand: brown; medium with a little coarse, and fine; subangular quartz.

London Clay
Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
<tr>
<td>Gravel 17</td>
<td>+16</td>
<td>8</td>
<td>6 - 9</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>9</td>
<td>9 - 12</td>
</tr>
<tr>
<td></td>
<td>-1+4</td>
<td>18</td>
<td>12 - 15</td>
</tr>
<tr>
<td>Sand 68</td>
<td>-4+1</td>
<td>2</td>
<td>15 - 18</td>
</tr>
<tr>
<td></td>
<td>-1+4</td>
<td>18</td>
<td>18 - 21</td>
</tr>
<tr>
<td></td>
<td>-1/16+1/16</td>
<td>48</td>
<td>21 - 24</td>
</tr>
<tr>
<td>Fines 15</td>
<td>-1/16</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
TM 02 SE 15

Black Boy Garage, Harwich Road

<table>
<thead>
<tr>
<th>Surface level (+34.4 m)</th>
<th>+113 ft</th>
<th>Water struck at (+32.0 m)</th>
<th>+105 ft</th>
<th>Wirth B0, 8 inch diameter</th>
<th>December 1969</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td></td>
<td>Waste (4.6 m) 15 ft</td>
<td></td>
<td>Bedrock (0.9 m+) 3 ft+</td>
<td></td>
</tr>
<tr>
<td>Soil and brown sandy clay.</td>
<td>(1.8) 6</td>
<td>(1.8) 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grey silt.</td>
<td>(1.2) 4</td>
<td>(3.0) 10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brownish-grey silty clay.</td>
<td>(1.5) 5</td>
<td>(4.6) 15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown weathered clay, passing down into fresh blue clay.</td>
<td>(0.9+) 3+</td>
<td>(5.5) 18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TM 02 SE 16

Morehams Hall, Frating Green

<table>
<thead>
<tr>
<th>Surface level (+29.9 m)</th>
<th>+98 ft</th>
<th>Water struck at (+27.4 m)</th>
<th>+90 ft</th>
<th>Wirth B0, 8 inch diameter</th>
<th>February 1970</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td></td>
<td>Overburden (1.5 m) 5 ft</td>
<td></td>
<td>Mineral (1.2 m) 4 ft</td>
<td></td>
</tr>
<tr>
<td>Soil and sandy clay.</td>
<td>(1.5) 5</td>
<td>(1.5) 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Clayey' sandy gravel.</td>
<td></td>
<td>Appreciable fines content throughout.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel: fine with coarse; subangular to rounded flint with quartz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand: brown; mainly medium; subangular to subrounded quartz, with a little subangular flint.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London Clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown weathered clay, passing down into fresh blue clay.</td>
<td>(0.9+) 3+</td>
<td>(3.7) 12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percentages

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>42</td>
<td>+16: 17; -16+4: 25</td>
<td>5 - 8</td>
</tr>
<tr>
<td>Sand</td>
<td>48</td>
<td>-4+1: 9; -1+4: 33; -1/2: 6</td>
<td>8 - 9</td>
</tr>
<tr>
<td>Fines</td>
<td>10</td>
<td>-1/16: 10</td>
<td></td>
</tr>
</tbody>
</table>
Surface level (+30.2 m) +99 ft
Water struck at (+22.3 m) +73 ft
Wirth B0, 8 inch diameter
November 1969

TM 02 SE 17 0884 2324 Near Holly Farm, Frating Green Block G

Loam
Soil and streaky brown clay. (2.1) 7 (2.1) 7

Glacial Sand and Gravel
Reddish-brown clay with gravel. (0.9) 3 (3.0) 10
Sandy gravel.
Gravel: fine with coarse; subangular to subrounded flint and quartz.
Sand: reddish-brown; medium with some coarse.
Grey silt. (6.7) 22 (11.6) 38
Dirty clay with fine and coarse gravel. (0.3) 1 (11.9) 39
London Clay
Brown weathered clay passing down into fresh blue clay. (0.9+) 3+ (12.8) 42

% mm % Depth below surface (ft)
Gravel 35 +16 : 13 10 - 13
-16+4 : 22 13 - 16
Sand 62 -4+1 : 12
-1+1/4 : 43
-1/4+1/16 : 7
Fines 3 -1/16 : 3

Fines 3 - Ill6 86

Overburden (3.0 m) 10 ft
Mineral (1.8 m) 6 ft
Waste (7.0 m) 23 ft
Bedrock (0.9 m+) 3 ft+

Thickness (m) ft Depth (m) ft
(0.9) 3 (2.1) 7
(0.9) 3 (2.1) 7
(0.9) 3 (2.1) 7
(1.8) 6 (4.9) 16
(6.7) 22 (11.6) 38
(0.9) 3+ (12.8) 42

Percentages
Fines 3 62 35
Sand 62 35
Gravel 35 No grading available
Surface level (+29.3 m) +96 ft
Water struck at (+27.1 m) +89 ft
Wirth B0, 8 inch diameter
February 1970

Glacial Sand and Gravel

Overburden (0.9 m) 3 ft
Mineral (8.5 m) 28 ft
Bedrock (0.9 m+) 3 ft+

Thickness
(m) ft

Depth
(m) ft

(0.9) 3 (0.9) 3
(8.5) 28 (9.4) 31

Sandy gravel. Sandy to 13 ft (4.0 m), gravelly below. A few subangular cobbles occur in the bottom 9 ft (2.7 m). Gravel: fine with some coarse; subangular to rounded flints with a little rounded quartz to 25 ft (7.6 m); predominantly subangular flints below. Sand: yellowish-brown; mainly medium, becoming medium to coarse and then mainly coarse below 19 ft (5.8 m); subangular to subrounded quartz with subangular flint.

London Clay

Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel: 45</td>
<td>+16 : 12</td>
</tr>
<tr>
<td></td>
<td>-16+4 : 33</td>
</tr>
<tr>
<td>Sand: 52</td>
<td>-4+1 : 19</td>
</tr>
<tr>
<td></td>
<td>-1+1/4 : 28</td>
</tr>
<tr>
<td></td>
<td>-1/2 +1/16 : 7</td>
</tr>
</tbody>
</table>

| Fines: 3 | -1/16 : 3 |

Depth below surface (ft)

| 3 - 7 |
| 7 - 10 |
| 10 - 13 |
| 13 - 16 |
| 16 - 19 |
| 19 - 22 |
| 22 - 25 |
| 25 - 28 |
| 28 - 31 |

Percentages

<table>
<thead>
<tr>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>No grading available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>74</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>62</td>
</tr>
<tr>
<td>2</td>
<td>41</td>
<td>57</td>
</tr>
</tbody>
</table>

87
Surface level (+22.6 m) +74 ft
Water struck at (+21.6 m) +71 ft
Wirth B0, 8 inch diameter
February 1970

Soil and made ground.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.2)</td>
<td>4</td>
</tr>
</tbody>
</table>

London Clay
Brown silty clay.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.9)</td>
<td>3</td>
</tr>
</tbody>
</table>

London Clay
Brown weathered clay.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.9+)</td>
<td>3+</td>
</tr>
</tbody>
</table>

Surface level (+30.8 m) +101 ft
Water struck at (+27.1 m) +89 ft
Wirth B0, 8 inch diameter
November 1969

Glacial Sand and Gravel
Soil and gravel contaminated by excess clay content.

Grey silty clay with gravel.

'Clayey' sandy gravel. Fine and coarse; subangular to subrounded flint gravel, and brown to greyish-brown, medium with fine sand intermixed with blue silt and clay.

London Clay
Brown weathered clay.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.9+)</td>
<td>3+</td>
</tr>
<tr>
<td>(5.2)</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>Gravel</th>
<th>%</th>
<th>Sand</th>
<th>%</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+16</td>
<td>: 16</td>
<td>50</td>
<td>: 32</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>-16+4</td>
<td>: 16</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4+1</td>
<td>: 3</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1+1/4</td>
<td>: 32</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1/4+1/16</td>
<td>: 15</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1/16</td>
<td>: 18</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thickness Depth
(m) ft (m) ft

Block G
Surface level (+26.5 m) +87 ft
Water struck at (+22.3 m) +73 ft
Wirth B0, 8 inch diameter
November 1969

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loam</td>
<td>Soil and brown clay.</td>
</tr>
<tr>
<td>Glacial Sand and Gravel</td>
<td>'Clayey' pebbly sand. High fines content and very little gravel in the top 9 ft (2.7 m), becoming more gravelly below. Gravel: traces of fine to 15 ft (4.6 m); fine and coarse below; subangular to subrounded flints and quartz. Sand: orange-brown; fine, becoming medium below 15 ft (4.6 m).</td>
</tr>
<tr>
<td>London Clay</td>
<td>Brown weathered clay, passing down into fresh blue clay.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>%</th>
<th>Depth below surface (ft)</th>
<th>Fines</th>
<th>Sand</th>
<th>Gravel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>23</td>
<td>+16</td>
<td>8</td>
<td>2 - 5</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-16+4</td>
<td>15</td>
<td>5 - 8</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8 - 11</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Sand</td>
<td>71</td>
<td>-4+1</td>
<td>12</td>
<td>11 - 14</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1+1/2</td>
<td>51</td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1/16</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fines</td>
<td>6</td>
<td>-1/16</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overburden (1.8 m) 6 ft
Mineral (5.5 m) 18 ft
Bedrock (0.9 m+) 3 ft+

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>(ft)</td>
</tr>
<tr>
<td>(1.8)</td>
<td>6</td>
</tr>
<tr>
<td>(5.5)</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fines</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

89
Surface level (+29.6 m) +97 ft
Water struck at (+24.7 m) +81 ft
Wirth B0, 8 inch diameter
November 1969

- **Overburden (3.4 m) 11 ft**
- **Mineral (8.2 m) 27 ft**
- **Bedrock (0.9 m+) 3 ft**

Loam
Soil and brown clay.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Depth below surface (ft)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fines</td>
</tr>
<tr>
<td>Gravel</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>-16+4</td>
<td></td>
<td>11 - 14</td>
<td>8</td>
</tr>
<tr>
<td>-16+4</td>
<td></td>
<td>14 - 17</td>
<td>6</td>
</tr>
<tr>
<td>Sand</td>
<td></td>
<td>20 - 23</td>
<td>5</td>
</tr>
<tr>
<td>-4+1</td>
<td></td>
<td>23 - 26</td>
<td>0</td>
</tr>
<tr>
<td>-4+1</td>
<td></td>
<td>26 - 29</td>
<td>0</td>
</tr>
<tr>
<td>-4+1</td>
<td></td>
<td>29 - 32</td>
<td>0</td>
</tr>
<tr>
<td>Fines</td>
<td></td>
<td>32 - 35</td>
<td>2</td>
</tr>
<tr>
<td>-1/16</td>
<td></td>
<td>35 - 38</td>
<td>1</td>
</tr>
</tbody>
</table>

Block G

- **Thickess**
 - (m) ft (m) ft
 - (3.4) 11 (3.4) 11
 - (8.2) 27 (11.6) 38
 - (0.9+) 3+ (12.5) 41

- **Depth**

<table>
<thead>
<tr>
<th>Depth below surface (m)</th>
<th>FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4</td>
<td>11</td>
</tr>
<tr>
<td>8.8</td>
<td>27</td>
</tr>
<tr>
<td>12.5</td>
<td>41</td>
</tr>
</tbody>
</table>
Near Thorrington Station

Surface level (+28.3 m) +93 ft
Water struck at +25.1 m (+82.5 ft)
Pilcon Shell, 8 inch diameter
December 1970

Loam
Soil and pale brown sandy clay.

Glacial Sand and Gravel
Sandy gravel. Sandy and 'clayey' at top becoming gravelly towards middle and sandy again at base.
Gravel: mainly fine, with some coarse towards middle; angular to rounded flints with subordinate subangular to subrounded quartz and some quartzite; traces of iron nodules towards base.
Sand: mainly medium, with some coarse and a little fine; orange to pale, brownish-yellow; subangular to sub-rounded flint and quartz.

London Clay
Reddish-brown clay, passing down to stiff, bluish-grey clay.

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Depth below surface (m)</th>
<th>Overburden 0.6 m (2 ft)</th>
<th>Mineral 6.6 m (21.5 ft)</th>
<th>Bedrock 0.3 m+ (1 ft+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fines</td>
<td>16</td>
<td>0.6</td>
<td>0.6</td>
<td>0.3+</td>
</tr>
<tr>
<td>Sand</td>
<td>71</td>
<td>1.4</td>
<td>1.4</td>
<td>7.5</td>
</tr>
<tr>
<td>Gravel</td>
<td>13</td>
<td>2.4</td>
<td>2.4</td>
<td>23.5</td>
</tr>
<tr>
<td>Fine</td>
<td>3</td>
<td>5.4</td>
<td>5.4</td>
<td>24.5</td>
</tr>
<tr>
<td>sand</td>
<td>63</td>
<td>6.4</td>
<td>6.4</td>
<td>25</td>
</tr>
<tr>
<td>gravel</td>
<td>37</td>
<td>7.2</td>
<td>7.2</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%</th>
<th>mm</th>
<th>Depth below surface (m)</th>
<th>Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravel</td>
<td>38 %</td>
<td>+16 / -16</td>
<td>0.6 - 1.4</td>
</tr>
<tr>
<td></td>
<td>59 %</td>
<td>-4 / -1</td>
<td>1.4 - 2.4</td>
</tr>
<tr>
<td></td>
<td>36 %</td>
<td>-1 / 0</td>
<td>2.4 - 3.4</td>
</tr>
<tr>
<td>Fines</td>
<td>3 %</td>
<td>-1 / 0</td>
<td>3.4 - 4.4</td>
</tr>
<tr>
<td></td>
<td>7 %</td>
<td>-1/16 / -1/16</td>
<td>4.4 - 5.4</td>
</tr>
<tr>
<td></td>
<td>7 %</td>
<td>-1/16 / -1/16</td>
<td>5.4 - 6.4</td>
</tr>
<tr>
<td></td>
<td>7 %</td>
<td>-1/16 / -1/16</td>
<td>6.4 - 7.2</td>
</tr>
</tbody>
</table>
Surface level (+26.5 m) +87 ft
Water struck at (+24.7 m) +81 ft
Wirth B0, 8 inch diameter
February 1970

Loam
Soil and brown sandy clay.

Glacial Sand and Gravel
'Clayey' sandy gravel. 'Clayey' at the top. Very sandy from 8 ft (2.4 m) to 11 ft (3.4 m).
Gravel: fine with a little coarse; sub-rounded to rounded flints, becoming more angular towards the bottom, with a little rounded quartz.
Sand: yellowish-brown; medium with some coarse; subangular to subrounded quartz and subangular flint.

London Clay
Brown weathered clay, passing down into fresh blue clay.

<table>
<thead>
<tr>
<th>% mm</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth below surface (ft)</td>
<td>Fines</td>
</tr>
<tr>
<td>5 - 8</td>
<td>17</td>
</tr>
<tr>
<td>8 - 11</td>
<td>10</td>
</tr>
<tr>
<td>11 - 14</td>
<td>7</td>
</tr>
<tr>
<td>14 - 17</td>
<td>5</td>
</tr>
<tr>
<td>17 - 19</td>
<td>9</td>
</tr>
</tbody>
</table>

Fines 10 -1/16 : 10
Appendix G: List of Workings

The following workings were seen during the survey:

Table 4. List of workings on sheet TM 02, with their locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rowhedge</td>
<td>030 213</td>
</tr>
<tr>
<td>Fingringhoe</td>
<td>042 208</td>
</tr>
<tr>
<td>Martell's Pit, near Ardleigh</td>
<td>050 282</td>
</tr>
<tr>
<td>Wivenhoe</td>
<td>048 225</td>
</tr>
<tr>
<td>Alresford</td>
<td>062 202</td>
</tr>
</tbody>
</table>

\{'All working pits\}

-93
Appendix H: Conversion Table, Metres to Feet (to nearest 0.5 ft)

<table>
<thead>
<tr>
<th>m</th>
<th>ft</th>
<th>m</th>
<th>ft</th>
<th>m</th>
<th>ft</th>
<th>m</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
<td>0.6</td>
<td>20</td>
<td>12.1</td>
<td>39.5</td>
<td>18.1</td>
<td>59.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.7</td>
<td>20.5</td>
<td>12.2</td>
<td>40</td>
<td>18.2</td>
<td>59.5</td>
</tr>
<tr>
<td>0.3</td>
<td>1</td>
<td>0.8</td>
<td>20.5</td>
<td>12.3</td>
<td>40.5</td>
<td>18.3</td>
<td>60</td>
</tr>
<tr>
<td>0.4</td>
<td>1.5</td>
<td>0.9</td>
<td>21</td>
<td>12.4</td>
<td>40.5</td>
<td>18.4</td>
<td>60.5</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>21.5</td>
<td>12.5</td>
<td>41</td>
<td>18.5</td>
<td>60.5</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>1.1</td>
<td>21.5</td>
<td>12.6</td>
<td>41.5</td>
<td>18.6</td>
<td>61</td>
</tr>
<tr>
<td>0.7</td>
<td>2.5</td>
<td>1.2</td>
<td>22</td>
<td>12.7</td>
<td>42</td>
<td>18.8</td>
<td>61.5</td>
</tr>
<tr>
<td>0.8</td>
<td>2.5</td>
<td>1.3</td>
<td>22.5</td>
<td>12.8</td>
<td>42.5</td>
<td>18.9</td>
<td>62</td>
</tr>
<tr>
<td>0.9</td>
<td>3</td>
<td>1.4</td>
<td>22.5</td>
<td>12.9</td>
<td>42.5</td>
<td>19.0</td>
<td>62.5</td>
</tr>
<tr>
<td>1.0</td>
<td>3.5</td>
<td>1.5</td>
<td>23</td>
<td>13.0</td>
<td>42.5</td>
<td>19.0</td>
<td>62.5</td>
</tr>
<tr>
<td>1.1</td>
<td>3.5</td>
<td>1.6</td>
<td>23.5</td>
<td>13.1</td>
<td>43</td>
<td>19.1</td>
<td>62.5</td>
</tr>
<tr>
<td>1.2</td>
<td>4</td>
<td>1.7</td>
<td>23.5</td>
<td>13.2</td>
<td>43.5</td>
<td>19.2</td>
<td>63</td>
</tr>
<tr>
<td>1.3</td>
<td>4.5</td>
<td>1.8</td>
<td>24</td>
<td>13.3</td>
<td>43.5</td>
<td>19.3</td>
<td>63.5</td>
</tr>
<tr>
<td>1.4</td>
<td>4.5</td>
<td>1.9</td>
<td>24.5</td>
<td>13.4</td>
<td>44</td>
<td>19.4</td>
<td>63.5</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>2.0</td>
<td>24.5</td>
<td>13.5</td>
<td>44.5</td>
<td>19.5</td>
<td>64</td>
</tr>
<tr>
<td>1.6</td>
<td>5</td>
<td>2.1</td>
<td>25</td>
<td>13.6</td>
<td>44.5</td>
<td>19.6</td>
<td>64.5</td>
</tr>
<tr>
<td>1.7</td>
<td>5.5</td>
<td>2.2</td>
<td>25.5</td>
<td>13.7</td>
<td>45</td>
<td>19.7</td>
<td>64.5</td>
</tr>
<tr>
<td>1.8</td>
<td>6</td>
<td>2.3</td>
<td>25.5</td>
<td>13.8</td>
<td>45.5</td>
<td>19.8</td>
<td>65</td>
</tr>
<tr>
<td>1.9</td>
<td>6</td>
<td>2.4</td>
<td>26</td>
<td>13.9</td>
<td>45.5</td>
<td>19.9</td>
<td>65.5</td>
</tr>
<tr>
<td>2.0</td>
<td>6.5</td>
<td>2.5</td>
<td>26</td>
<td>14.0</td>
<td>46</td>
<td>20.0</td>
<td>65.5</td>
</tr>
<tr>
<td>2.1</td>
<td>7</td>
<td>2.6</td>
<td>26.5</td>
<td>14.1</td>
<td>46.5</td>
<td>20.1</td>
<td>66</td>
</tr>
<tr>
<td>2.2</td>
<td>7</td>
<td>2.7</td>
<td>27</td>
<td>14.2</td>
<td>46.5</td>
<td>20.2</td>
<td>66.5</td>
</tr>
<tr>
<td>2.3</td>
<td>7.5</td>
<td>2.8</td>
<td>27.5</td>
<td>14.3</td>
<td>47</td>
<td>20.3</td>
<td>66.5</td>
</tr>
<tr>
<td>2.4</td>
<td>8</td>
<td>2.9</td>
<td>28</td>
<td>14.4</td>
<td>47</td>
<td>20.4</td>
<td>67</td>
</tr>
<tr>
<td>2.5</td>
<td>8</td>
<td>3.0</td>
<td>28</td>
<td>14.5</td>
<td>47.5</td>
<td>20.5</td>
<td>67.5</td>
</tr>
<tr>
<td>2.6</td>
<td>8.5</td>
<td>3.1</td>
<td>28.5</td>
<td>14.7</td>
<td>48</td>
<td>20.7</td>
<td>68</td>
</tr>
<tr>
<td>2.7</td>
<td>9</td>
<td>3.2</td>
<td>28.5</td>
<td>14.8</td>
<td>48.5</td>
<td>20.8</td>
<td>68.5</td>
</tr>
<tr>
<td>2.8</td>
<td>9</td>
<td>3.3</td>
<td>29</td>
<td>14.9</td>
<td>49</td>
<td>20.9</td>
<td>68.5</td>
</tr>
<tr>
<td>2.9</td>
<td>9.5</td>
<td>3.4</td>
<td>29</td>
<td>15.0</td>
<td>49</td>
<td>21.0</td>
<td>69</td>
</tr>
<tr>
<td>3.0</td>
<td>10</td>
<td>3.5</td>
<td>29.5</td>
<td>15.1</td>
<td>49.5</td>
<td>21.1</td>
<td>69.5</td>
</tr>
<tr>
<td>3.1</td>
<td>10</td>
<td>3.6</td>
<td>30</td>
<td>15.2</td>
<td>50</td>
<td>21.2</td>
<td>69.5</td>
</tr>
<tr>
<td>3.2</td>
<td>10.5</td>
<td>3.7</td>
<td>30.5</td>
<td>15.3</td>
<td>50</td>
<td>21.3</td>
<td>70</td>
</tr>
<tr>
<td>3.3</td>
<td>11</td>
<td>3.8</td>
<td>31</td>
<td>15.4</td>
<td>50.5</td>
<td>21.4</td>
<td>70.5</td>
</tr>
<tr>
<td>3.4</td>
<td>11</td>
<td>3.9</td>
<td>31.5</td>
<td>15.5</td>
<td>51</td>
<td>21.5</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>11.5</td>
<td>4.0</td>
<td>32</td>
<td>15.7</td>
<td>51.5</td>
<td>21.7</td>
<td>71.5</td>
</tr>
<tr>
<td>3.6</td>
<td>12</td>
<td>4.1</td>
<td>32.5</td>
<td>15.8</td>
<td>52</td>
<td>21.8</td>
<td>71.5</td>
</tr>
<tr>
<td>3.7</td>
<td>12</td>
<td>4.2</td>
<td>32.5</td>
<td>15.9</td>
<td>52</td>
<td>21.9</td>
<td>72</td>
</tr>
<tr>
<td>3.8</td>
<td>12.5</td>
<td>4.3</td>
<td>33</td>
<td>16.0</td>
<td>52.5</td>
<td>22.0</td>
<td>72</td>
</tr>
<tr>
<td>3.9</td>
<td>13</td>
<td>4.4</td>
<td>33</td>
<td>16.1</td>
<td>53</td>
<td>22.1</td>
<td>72.5</td>
</tr>
<tr>
<td>4.0</td>
<td>13</td>
<td>4.5</td>
<td>33.5</td>
<td>16.2</td>
<td>53</td>
<td>22.2</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>13.5</td>
<td>4.6</td>
<td>34</td>
<td>16.3</td>
<td>53.5</td>
<td>22.3</td>
<td>73.5</td>
</tr>
<tr>
<td>4.2</td>
<td>14</td>
<td>4.7</td>
<td>34</td>
<td>16.4</td>
<td>54</td>
<td>22.4</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>14</td>
<td>4.8</td>
<td>34.5</td>
<td>16.5</td>
<td>54</td>
<td>22.5</td>
<td>74.5</td>
</tr>
<tr>
<td>4.4</td>
<td>14.5</td>
<td>4.9</td>
<td>35</td>
<td>16.6</td>
<td>54.5</td>
<td>22.6</td>
<td>74.5</td>
</tr>
<tr>
<td>4.5</td>
<td>15</td>
<td>5.0</td>
<td>35</td>
<td>16.7</td>
<td>55</td>
<td>22.7</td>
<td>74.5</td>
</tr>
<tr>
<td>4.6</td>
<td>15</td>
<td>5.1</td>
<td>35.5</td>
<td>16.8</td>
<td>55</td>
<td>22.8</td>
<td>75</td>
</tr>
<tr>
<td>4.7</td>
<td>15.5</td>
<td>5.2</td>
<td>36</td>
<td>17.0</td>
<td>55.5</td>
<td>22.9</td>
<td>75.5</td>
</tr>
<tr>
<td>4.8</td>
<td>16</td>
<td>5.3</td>
<td>36</td>
<td>17.1</td>
<td>56</td>
<td>23.0</td>
<td>75.5</td>
</tr>
<tr>
<td>4.9</td>
<td>16</td>
<td>5.4</td>
<td>36.5</td>
<td>17.2</td>
<td>56</td>
<td>23.1</td>
<td>76</td>
</tr>
<tr>
<td>5.0</td>
<td>17</td>
<td>5.5</td>
<td>36.5</td>
<td>17.2</td>
<td>56.5</td>
<td>23.2</td>
<td>76.5</td>
</tr>
<tr>
<td>5.1</td>
<td>17</td>
<td>5.6</td>
<td>37</td>
<td>17.3</td>
<td>57</td>
<td>23.3</td>
<td>76.5</td>
</tr>
<tr>
<td>5.2</td>
<td>17</td>
<td>5.7</td>
<td>37</td>
<td>17.4</td>
<td>57.5</td>
<td>23.4</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>17.5</td>
<td>5.8</td>
<td>37.5</td>
<td>17.5</td>
<td>57.5</td>
<td>23.5</td>
<td>77.5</td>
</tr>
<tr>
<td>5.4</td>
<td>18</td>
<td>5.9</td>
<td>38</td>
<td>17.6</td>
<td>57.5</td>
<td>23.6</td>
<td>77.5</td>
</tr>
<tr>
<td>5.5</td>
<td>18</td>
<td>6.0</td>
<td>38.5</td>
<td>17.7</td>
<td>58</td>
<td>23.7</td>
<td>78</td>
</tr>
<tr>
<td>5.6</td>
<td>18.5</td>
<td>6.1</td>
<td>38.5</td>
<td>17.8</td>
<td>58.5</td>
<td>23.8</td>
<td>78</td>
</tr>
<tr>
<td>5.7</td>
<td>19</td>
<td>6.2</td>
<td>39</td>
<td>17.9</td>
<td>58.5</td>
<td>23.9</td>
<td>78.5</td>
</tr>
<tr>
<td>5.8</td>
<td>19</td>
<td>6.3</td>
<td>39.5</td>
<td>18.0</td>
<td>59</td>
<td>24.0</td>
<td>78.5</td>
</tr>
<tr>
<td>5.9</td>
<td>19.5</td>
<td>6.4</td>
<td>39.5</td>
<td>18.0</td>
<td>59</td>
<td>24.0</td>
<td>78.5</td>
</tr>
<tr>
<td>6.0</td>
<td>19.5</td>
<td>6.5</td>
<td>40</td>
<td>18.1</td>
<td>59</td>
<td>24.0</td>
<td>78.5</td>
</tr>
</tbody>
</table>

94
References

The following reports of the Institute relate particularly to sand and gravel resources:

REPORTS OF THE INSTITUTE OF GEOLOGICAL SCIENCES

Assessment of British Sand and Gravel Resources

No. 1 The sand and gravel resources of the country south-east of Norwich, Norfolk: Description of 1:25,000 resource sheet TG 20. By E. F. P. Nickless. Price £1.15. Report No. 71/29

No. 2 The sand and gravel resources of the country around Witham, Essex: Description of 1:25,000 resource sheet TL 81. By H. J. E. Haggard. Price £1.20. Report No. 72/6

No. 3 The sand and gravel resources of the area south and west of Woodbridge, Suffolk: Description of 1:25,000 resource sheet TM 24. By R. Allender and S. E. Hollyer. Price £1.70. Report No. 72/9

No. 4 The sand and gravel resources of the country around Maldon, Essex: Description of 1:25,000 resource sheet TL 80. By J. D. Ambrose. Price £1.30. Report No. 73/1

No. 5 The sand and gravel resources of the country around Hethersett, Norfolk: Description of 1:25,000 resource sheet TG 10. By E. F. P. Nickless. Price £1.60. Report No. 73/4

No. 6 The sand and gravel resources of the country around Terling, Essex: Description of 1:25,000 resource sheet TL 71. By C. H. Eaton. Price £1.20. Report No. 73/5

No. 7 The sand and gravel resources of the country around Layer Breton and Tolleshunt D'Arcy, Essex: Description of 1:25,000 resource sheet TL 91 and part of TL 90. By J. D. Ambrose. Price £1.30. Report No. 73/8

No. 8 The sand and gravel resources of the country around Shoalness and Felixstowe, Suffolk: Description of 1:25,000 resource sheet TM 25. By R. Allender and S. E. Hollyer. Price £1.60. Report No. 73/13

No. 9 The sand and gravel resources of the country around Attlebridge, Norfolk: Description of 1:25,000 resource sheet TG 11. By E. F. P. Nickless. Price £1.85. Report No. 73/15

No. 10 The sand and gravel resources of the country west of Colchester, Essex: Description of 1:25,000 resource sheet TL 92. By J. D. Ambrose. Price £1.45. Report No. 74/6

No. 11 The sand and gravel resources of the country around Tattingstone, Suffolk: Description of 1:25,000 resource sheet TM 13. By S. E. Hollyer. Price £1.95. Report No. 74/9

No. 12 The sand and gravel resources of the country around Gerrards Cross, Buckinghamshire: Description of 1:25,000 resource sheets SU 98, SU 99, TQ 08 and TQ 09. By H. C. Squirrell. Price £2.20. Report No. 74/14

MINERAL ASSESSMENT REPORTS

No. 15 The sand and gravel resources of the country east of Chelmsford, Essex. Description of 1:25,000 resource sheet TL 70. By M. R. Clarke. Price £3.50.

REPORTS OF THE INSTITUTE OF GEOLOGICAL SCIENCES

Other Reports

Government publications can be bought from the Government Bookshops in London (post orders to P. O. Box 569, SE1), Edinburgh, Cardiff, Belfast, Manchester, Birmingham, Bristol or through booksellers. Postage is not included in the prices given. The full range of Institute publications is displayed and sold at the Institute's Bookshop.

Dd. 289679 K12
Printed in England for Her Majesty's Stationery Office by Headley Brothers Limited, London and Ashford, Kent.