Definitions, mineralogy and deposits

Definitions and characteristics
Niobium (Nb) and tantalum (Ta) are transition metals with very similar physical and chemical properties, and are thus commonly grouped together (Table 1). Niobium was discovered in 1801 by Charles Hatchett, and was originally named ‘columbium’; it was subsequently also recognised by a German chemist, Heinrich Rose, who named it ‘niobium’. The names were used interchangeably for some time, before ‘niobium’ was finally accepted in 1949. Tantalum was discovered in 1802 by a Swedish scientist, Anders Ekeberg.

Niobium is a shiny, ductile metal with a white lustre. Naturally-occurring niobium consists almost exclusively of the isotope 93Nb; natural tantalum is mainly 181Ta, with 0.012 per cent 180Ta. A number of other radioactive isotopes of both elements have been synthesised.

The overall abundances of niobium and tantalum in the average continental crust are relatively low, niobium having an abundance of eight parts per million (ppm) and tantalum of 0.7 ppm (Rudnick and Gao, 2004). Compared to other metallic elements such as the light rare earths, niobium and tantalum are rather depleted in the continental crust. This can be attributed to the fact that much of the continental crust was formed at convergent margins above subduction zones, and that magmas formed in this setting are typically depleted in both niobium and tantalum.

Mineralogy
Niobium and tantalum do not occur naturally as free metals, but are essential components in a range of mineral species (Table 2). The majority of these are oxide minerals; silicates of niobium and tantalum do exist, but are relatively rare. Niobium and tantalum also substitute for major ions in a number of other minerals, in which they typically have low concentrations. The vast majority of the economically important species are oxides.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Niobium (Nb)</th>
<th>Tantalum (Ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic number</td>
<td>41</td>
<td>73</td>
</tr>
<tr>
<td>Atomic weight</td>
<td>92.90638</td>
<td>180.9479</td>
</tr>
<tr>
<td>Density at 293 K (g/cm3)</td>
<td>8.581</td>
<td>16.677</td>
</tr>
<tr>
<td>Melting point °C</td>
<td>2468</td>
<td>2996</td>
</tr>
<tr>
<td>Boiling point °C</td>
<td>4930</td>
<td>5425</td>
</tr>
<tr>
<td>Vickers hardness MPa</td>
<td>1320</td>
<td>873</td>
</tr>
<tr>
<td>Electrical resistivity (nano ohm-metres)</td>
<td>152 at 0°C</td>
<td>131 at 20°C</td>
</tr>
<tr>
<td>Crystal structure</td>
<td>Body centred cubic</td>
<td>Body centred cubic</td>
</tr>
</tbody>
</table>

The columbite-tantalite mineral group (Figure 1) is the most common group of tantalum- and niobium-bearing minerals. Weddelinite is also an important source of tantalum. The pyrochlore group (Figure 2) is of great economic importance, particularly for niobium. This group has a wide compositional range, including some species rich in both niobium and tantalum. Pyrochlore is typically found as a primary mineral in alkaline igneous rocks.

Figure 1 Dark coloured tantalite with pale coloured albite1.
Other, less common oxides of niobium and tantalum include tapiolite, ixiolite, and minerals of the perovskite group. Niobium and tantalum also substitute for major ions in some common oxide groups such as cassiterite, rutile, and ilmenite. Contents of niobium and tantalum in these minerals are rarely high enough to make them of economic interest. Similarly, niobium and tantalum occur as substitutes in a range of silicate minerals, typically those found in alkaline igneous rocks such as eudialyte (Na₄(Ca,Ce)₄(Fe,Mn,Y)ZrSi₆O₂₃(OH,Cl)₃).

Deposits

Niobium and tantalum mineral deposits are most commonly associated with igneous rocks, including granites, pegmatites, syenites and carbonatites. Some secondary deposits, where niobium- and tantalum-bearing minerals have been concentrated by weathering and sedimentary processes, are also known. In general, these secondary deposits occur in relatively close association with their primary sources, and so they are not considered separately in the descriptions below.

Primary Niobium and Tantalum deposits can be divided into three main types, on the basis of the igneous rocks with which they are associated (Küster, 2009):

1. Carbonatites and associated rocks
2. Alkaline to peralkaline granites and syenites
3. Granites and pegmatites of the LCT family (enriched in lithium (Li), caesium (Cs), tantalum) (Černý and Ercit, 2005).

Moderately high contents of niobium and tantalum may be found in some granites and pegmatites that do not fall into the categories given above, but economic examples are not known.

Table 2 Selected niobium and tantalum minerals and indicative contents of Nb₂O₅ and Ta₂O₅.

<table>
<thead>
<tr>
<th>Mineral name</th>
<th>Mineral group</th>
<th>Formula</th>
<th>Nb₂O₅ (%)</th>
<th>Ta₂O₅ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbite</td>
<td>Columbite-tantalite</td>
<td>(Fe,Mn)(Nb,Ta)₂O₆</td>
<td>78.72</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tantalite</td>
<td>Columbite-tantalite</td>
<td>(Fe,Mn)Ta,Nb)₂O₆</td>
<td>n.a.</td>
<td>86.17</td>
</tr>
<tr>
<td>Pyrochlore</td>
<td>Pyrochlore</td>
<td>(Na,Ca)₂Ta₂O₆(O,OH,F)</td>
<td>75.12</td>
<td>n.a.</td>
</tr>
<tr>
<td>Microlite</td>
<td>Pyrochlore</td>
<td>(Na,Ca)₂Ta₂O₆(O,OH,F)</td>
<td>n.a.</td>
<td>83.53</td>
</tr>
<tr>
<td>Tapiolite</td>
<td>Tapiolite</td>
<td>(Fe,Mn)Ta,Nb)₂O₆</td>
<td>1.33</td>
<td>83.96</td>
</tr>
<tr>
<td>Ixiolite</td>
<td>Ixiolite</td>
<td>(Ta,Nb,Sn,Mn,Fe)₂O₆</td>
<td>8.30</td>
<td>68.96</td>
</tr>
<tr>
<td>Wodginite</td>
<td>Wodginite</td>
<td>(Ta,Nb,Sn,Mn,Fe)₂O₆</td>
<td>8.37</td>
<td>69.58</td>
</tr>
<tr>
<td>Loparite</td>
<td>Perovskite</td>
<td>(Ce,La,Na,Ca,Al)(Nb,Ta)₂O₆</td>
<td>16.15</td>
<td>n.a.</td>
</tr>
<tr>
<td>Luessenhite</td>
<td>Perovskite</td>
<td>NaNbO₃</td>
<td>81.09</td>
<td>n.a.</td>
</tr>
<tr>
<td>Euxenite</td>
<td>Euxenite</td>
<td>(Y, Ca, Ce, U)Ta,Nb)₂O₆</td>
<td>47.43</td>
<td>22.53</td>
</tr>
<tr>
<td>Struverite</td>
<td>Rutile</td>
<td>(Ti,Ta,Fe)₂O₆</td>
<td>11.32</td>
<td>37.65</td>
</tr>
<tr>
<td>Ilmenorutile</td>
<td>Rutile</td>
<td>Fe₆(Nb,Ta)₁₂₂(Ti₁₋₄)O₂₁</td>
<td>27.9</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

Carbonatites and associated rocks
Carbonatites are igneous rocks that consist of more than 50 per cent primary carbonate minerals. They are almost exclusively found in areas of continental extension and rifting, and their source magmas are thought to be derived directly from the mantle with very little crustal influence. Carbonatites are most commonly found as dikes, sills and small plugs (less than one kilometre in diameter), more rarely occurring as large plutons or as extrusive volcanic sequences. They rarely occur in isolation, being more commonly associated with alkaline silicate rocks, either nepheline syenite and other feldspathoid-bearing igneous rocks, or mafic ultramafic alkaline rocks (Woolley and Kjarsgaard, 2008). Many carbonatite bodies are surrounded by a metasomatised or ‘fenitised’ zone, typically rich in sodium (Na) and/or potassium (K), formed through alteration of the country rocks by fluids derived from the carbonatite. Some carbonatite bodies are considered to be carbohydrothermal — formed from carbon dioxide-rich and water-rich fluids rather than magmas.

Carbonatites are typically enriched in a range of elements, including the rare earth elements (REE), barium (Ba), strontium (Sr), fluorine (F), phosphorus (P), niobium (Nb), zirconium (Zr), uranium (U) and thorium (Th). Niobium is preferentially enriched over tantalum in carbon dioxide-rich melts, and so carbonatites do not generally have high tantalum contents (Möller, 1989). Common niobium-bearing minerals found in carbonatites include members of the perovskite and pyrochlore mineral groups, as well as niobium-rich silicates such as titanite (Mitchell, 2005).

In general, bulk rock niobium contents for carbonatite bodies are moderately high (commonly 0.01–0.1 per cent, rarely up to 1.0 per cent), but not ore-grade. However, magmatic differentiation processes such as crystal settling may concentrate niobium-bearing minerals such as pyrochlore. Weathering processes may also concentrate these minerals in the shallow subsurface. Late-stage veins and areas of metasomatism, formed through carbohydrothermal activity, are a third potential source of niobium mineralisation.

Much of the world’s niobium supply comes from Brazil, where the main niobium deposits occur in alkaline ultramafic-carbonatite complexes of the Late Cretaceous Alto Paranaiba igneous province, intruded into Neoproterozoic metasedimentary rocks. The largest currently worked niobium deposit is at Araxá, and is owned and exploited by the Companhia Brasileira de Metalurgia e Mineração (CBMM). A second major niobium mine, at Catalão, is operated by Anglo American. These deposits are hosted in rather unusual intrusions consisting of carbonatite- and phoscorite-series rocks with no associated syenites. In both deposits, pyrochlore is the main niobium ore mineral. The Araxá deposit lies within the Barreiro Carbonatite Complex, a roughly circular intrusion approximately 4.5 kilometre in diameter (Nasraoui and Waerenborgh, 2001), dominated by dolomite carbonatite with subordinate calcite carbonatite, glimmerite and phoscorite. The central part of the intrusion has been weathered under tropical conditions to form a thick (>200 metres), lateritic cover in which pyrochlore has become concentrated at a reported mean grade of 2.5 per cent niobium oxide, and which is exploited by open-pit mining. The country rocks to the carbonatite have been metasomatised in an aureole up to 2.5 kilometre wide (Nasraoui and Waerenborgh, 2001). The main worked deposit at Catalão is in the Catalão I alkaline-carbonatite complex, but a similar deposit occurs in the nearby Catalão II complex. Catalão I is a steep-sided, zoned intrusive body with a diameter of approximately six kilometres at the surface. It is dominated by glimmerite (phlogopite) at the margins of the complex, with sheets and plugs of dolomite-carbonatite and phoscorite-series rocks that become increasingly common towards the centre of the complex (Cordeiro et al., 2010). As at Araxá, the mined deposit is in the weathered lateritic zone above the centre of the complex.

The largest active niobium mine outside Brazil is the Niobec mine in Quebec, Canada, operated by the lamgold
Niobium–tantalum

Corporation. This mine lies in the southern part of the Neoproterozoic-age Saint-Honoré carbonatite complex, which has an elliptical shape and is approximately four kilometres across at the surface. It consists of a series of crescentic lenses of carbonatite, younging inwards from calcite carbonatite through dolomite carbonatite to ferrocarbonatite (Belzile, 2009). The carbonatite body is surrounded by a ring of syenites and diorites, and is almost entirely covered by Palaeozoic23 limestones. Pyrochlore is the main niobium mineral in the Saint-Honoré complex. It is disseminated throughout the carbonatite, but is particularly abundant in mineralised lenses that are 50–150 metres wide and up to approximately 750 metres long, with grades of 0.44–0.51 per cent niobium oxide (Belzile, 2009). These mineralised zones occur at depths of over 100 metres beneath the surface, and the Niobec mine is the only underground niobium mine in the world. On the same structural lineament, the nearby Crevier syenite-carbonatite complex contains a niobium-tantalum deposit which is currently being evaluated.

Numerous other carbonatite-hosted niobium deposits are known across the world, but are not currently being exploited. The most significant of these are the Tomtor deposit in Siberia, Russia and the Morro dos Seis Lagos deposit in Brazil (Pollard, 1995). The Neoproterozoic-age Tomtor alkaline complex comprises an outer ring of nepheline-syenites, with a central stock24 of carbonatite, having a surface area of approximately 12 square kilometres (Kravchenko and Pokrovsky, 1995). Pyrochlore is disseminated throughout the carbonatite, but is particularly concentrated in two ore horizons. The lower ore horizon, which is up to 300 metres thick, represents the weathered and altered top to the carbonatite body, whilst the upper ore horizon is a buried placer deposit25 formed in an ancient lake, associated with Permian26 sedimentary rocks. The upper ore horizon contains more than 12 per cent niobium (Kravchenko and Pokrovsky, 1995). The Morro dos Seis Lagos deposit is poorly known, to the extent that even its age is uncertain (Berger et al., 2009), but it is thought to represent the largest single niobium deposit in the world with 2897 million tonnes niobium (Pollard, 1995).

A total of 58 carbonatite bodies containing niobium and rare earth element mineral deposits have been recorded in published work (Berger et al., 2009) and other such deposits may remain to be found. The smaller deposits include

well-studied examples from Lueshe (Democratic Republic of Congo), Oka (Quebec, Canada), and Sökli (Finland). The Lueshe syenite-carbonatite complex, which is Cambrian27 in age, has a central core of syenite some 800 metres in diameter, bordered by a ring dyke of calcite carbonatite and dolomite carbonatite (Nasraoui and Bilal, 2000). Intense weathering of the carbonatites has formed a laterite horizon which is enriched in pyrochlore, and has been mined for niobium. The Cretaceous28 Oka carbonatite complex is an ellipsoidal pluton, about seven kilometres long, comprising carbonatites and feldspathoid-bearing silicate rocks. It includes three separate niobium-mineralised deposits containing minerals of the perovskite and pyrochlore groups (Zurevinski and Mitchell, 2004). The Sökli carbonatite-phoscorite complex is Devonian29 in age, with an area of about 20 square kilometres, and comprises metasomatised ultramafic rocks, carbonatites and phoscorites, with abundant pyrochlore in the younger units of the complex (Lee et al., 2006). The major Bayan Obo rare earth element deposit in China, which is also enriched in niobium, is associated with carbonatite magmatism and may have been formed by the interaction of carbonatite-derived fluids and sedimentary host rocks (Yang et al., 2009).

Alkaline to peralkaline granites and syenites

The alkaline igneous rocks are classified, on the basis of mineralogy, as those rocks containing certain sodium- or potassium-rich minerals (feldspathoids, alkali amphiboles, or alkali pyroxenes). Peralkaline rocks are a subset in which the molecular amount of Na2O + K2O exceeds Al2O320. Alkaline rocks are most commonly found in intra-plate settings such as zones of continental rifting, but they may also be formed in post-collisional31 to post-orogenic32 environments. The most evolved alkaline igneous rocks, such as alkali granites and syenites, are characterised by high contents of iron (Fe), fluorine, niobium, zirconium, rubidium (Rb), uranium, thorium and rare earth elements but low niobium and tantalum (Pollard, 1989, Küster, 2009). Mineral deposits in alkaline igneous rocks typically contain high contents of zirconium, yttrium (Y), niobium and the rare earth elements, but are less commonly enriched in tantalum.

Several factors contribute to the enrichment of High Field Strength Elements33 (HFSE), such as niobium and zirconium.
niobium, in alkaline igneous rocks such as alkaline granites and syenites. Alkaline magmas are most commonly considered to be derived from the enriched sub-continental lithospheric mantle, and are enriched in the HFSE from their formation. The HFSE are incompatible and thus they become enriched in the most evolved, granitic and syenitic magmas; in some localities, ore minerals are found disseminated throughout highly evolved granites and syenites. Further concentration can occur because the HFSE typically form relatively dense minerals, which may be accumulated through crystal settling into layers. The most famous example of a niobium deposit formed in this way is in the Ilímaussaq Complex of south-west Greenland. However, many mineralised deposits within alkaline rocks, such as the Motzfeldt deposit in Greenland, have undergone further concentration of elements such as the HFSE and REE through hydrothermal processes (Salvi and Williams-Jones, 2005). The HFSE and REE appear to be highly mobile in fluids associated with peralkaline magmas that are enriched in fluorine, chlorine (Cl) and/or carbon dioxide (Goodenough et al., 2000, Salvi and Williams-Jones, 2005).

At the time of writing, there are few niobium or tantalum mines operating in alkaline granite and syenite complexes, although exploration is under way in some areas. One major area of interest lies in the Mesoproterozoic Gardar Igneous Province in south-west Greenland, including the Ilímaussaq and Motzfeldt complexes. The Ilímaussaq Complex is elliptical, 8 x 17 kilometres at the surface, and comprises a range of mineralogically unique syenites and alkaline granites which are spectacularly layered in places (Larsen and Sorensen, 1987). The main mineral deposits occur in a unit of layered syenites known as kakortokites, which contains twenty-nine separate layers that are rich in eudialyte, with high contents of zirconium, yttrium, niobium and the REE. The average grade of niobium in these layers is 0.1 weight per cent niobium oxide (Salvi and Williams-Jones, 2005). In the Kvanefjeld area of the Ilímaussaq Complex, hydrothermal veins in the syenites and their country rocks contain significant uranium-niobium mineralisation. Zones of hydrothermally altered syenite also host the niobium-tantalum-REE pyrochlore mineralisation in the Motzfeldt intrusion (Steenfelt, 1991) which is the subject of an ongoing exploration programme.

In Russia’s Kola Peninsula, the Devonian-age Lovozero syenite massif contains layered syenites with layers that are rich in eudialyte, loparite andapatite. Loparite has been mined on and off for many years, and the loparite concentrates have average grades of eight weight per cent niobium oxide and 0.7 weight per cent tantalum oxide (Salvi and Williams-Jones, 2005). The Mesoproterozoic Pilanesberg Complex of South Africa is another large (> 500 square kilometres) alkaline complex with eudialyte-rich syenites that are enriched in zirconium, niobium and the REE.

In eastern Canada, the Strange Lake peralkaline granite pluton, which is Mesoproterozoic in age, outcrops over an area of about 36 square kilometres. It has a central ore zone where the granite has undergone extensive haematitisation and calcium metasomatism, producing a range of secondary HFSE-bearing minerals, including gittinsite and pyrochlore. Ore from this zone has an average grade of 0.56 weight per cent niobium oxide (Salvi and Williams-Jones, 2005, Salvi and Williams-Jones, 2006). In Canada’s Northwest Territories, the Palaeoproterozoic Blatchford Lake igneous complex comprises syenites and peralkaline granites with a number of hydrothermally altered mineralised zones, known as the Thor Lake deposits. These deposits are enriched in beryllium (Be), yttrium, REE, niobium, tantalum and zirconium, with columbite-tantalite minerals hosting the majority of the niobium and tantalum, and average grades up to 0.4 weight per cent niobium (Salvi and Williams-Jones, 2005). The Thor Lake deposits are currently owned by Avalon Rare Metals Inc, which intends to develop them for REE, niobium and tantalum.

In Mongolia, the Devonian-age Khaldzan-Buregtey zirconium-niobium-REE deposit is formed by the hydrothermally altered late phase intrusions of a peralkaline granite massif (Kovalenko et al., 1995). Pyrochlore is the main niobium ore mineral. In Malawi, exploration is ongoing at the Kanyika niobium-tantalum deposit, which comprises an elongate body of nepheline syenite over 3.5 kilometres long with numerous mineralised, pyrochlore-bearing veins (BGS, 2009). In Saudi Arabia, the Ghurayyah alkaline granite stock is about 800 metres in surface diameter and contains disseminated tantalum and niobium ore minerals, chiefly columbite-tantalite and pyrochlore. The distribution of these ore minerals appears to be remarkably consistent throughout the granite (Küster, 2009). In Brazil, niobium and tantalum are extracted along with tin from a Palaeoproterozoic-age albitic-rich peralkaline granite at

34 Lithospheric: the lithosphere is the outer, rigid layer of the Earth, including both the Earth’s crust and the uppermost part of the mantle.
35 Incompatible elements: are those that are concentrated into molten magmas, rather than into early-forming crystals of solid minerals.
36 Hydrothermal: formed from hot water-rich fluids.
37 Mesoproterozoic: a unit of geological time between 1600 and 1000 million years ago.
38 Haematisation: alteration associated with the formation of the iron oxide mineral, haematite.
the Pitinga mine (Bastos-Neto et al., 2009). Alkaline to peralkaline intrusions with the potential for niobium and/or tantalum deposits occur in many other countries, including Morocco, Nigeria, and Namibia.

Granites and pegmatites of the LCT family (enriched in lithium, caesium, tantalum)

Granites and pegmatites of the LCT family are typically peraluminous and enriched in lithium, rubidium, caesium, beryllium, tin (Sn), tantalum and niobium (tantalum greater than niobium) (Černý and Ercit, 2005). These magmas are formed by melting of pre-existing crustal rocks, and were most commonly emplaced as post-orogenic plutons in zones of continental collision. Granites and pegmatites of this type are the main hosts for tantalum deposits across the world. These intrusions typically take the form of a large peraluminous leucogranitic pluton surrounded by a halo of pegmatites, with the most mineralised pegmatites at the greatest distance from the granite (Černý, 1989), although in some areas swarms of pegmatites are not associated with exposed granitic plutons.

The granite bodies contain minerals such as biotite, muscovite, topaz and tourmaline, and are typically rather heterogeneous, showing extensive albitionisation and alteration by late-stage fluids. These granites may contain disseminated tantalum ore minerals, particularly concentrated in the uppermost parts of the granitic body (Linnen and Cuney, 2005).

Many of the largest tantalum deposits occur in pegmatite swarms. LCT pegmatites can be divided into five types: the beryl type; the complex (spodumene-petralite-amblygonite) type; the complex lepidolite type; the albite-spodumene type; and the albite type (Černý, 1989). Many of the pegmatites falling into the first three types are zoned. All types can contain a range of tantalum minerals, of which the most important are generally columbite-tantalite, microlite, ixiolite and wodginite. Tantalum-rich cassiterite (tin oxide) is also an important ore mineral in some bodies. Many of the pegmatites have been highly affected by late-stage alteration, such as kaolinisation.

In recent years, much of the world’s production of tantalum has come from the Greenbushes and Wodgina mines in Australia, although production from these mines ceased between 2008 and 2011. Both mines are owned by Global Advanced Metals (previously Talison). The Greenbushes mine in south-western Australia is hosted in a giant granitic body (greater than three kilometre long) syn-tectonic, zoned, complex-type pegmatite body of Archaean age, which contains large resources of both tantalum and lithium, associated with tin mineralisation. This pegmatite does not appear to be genetically associated with a larger granitic body (Partington et al., 1995). Three phases of tantalum mineralisation are recorded within this pegmatite: early-formed minerals such as wodginite and ixiolite, which form inclusions in cassiterite and tourmaline; tantalites and tapiolites in fractures within early silicate phases; and later hydrothermal mineralisation, where microlite is the main tantalum mineral (Partington et al., 1995). The Greenbushes pegmatite has been exploited by both open pit and underground mining. In north-western Australia, a large number of pegmatite swarms occur within the Archaean rocks of the Pilbara Craton, and many of these include some tantalum-mineralised examples. The most important area here is the Wodgina pegmatite district, which includes the Wodgina Main Lode and Mount Cassiterite tantalum-mineralised pegmatites. The Wodgina Main Lode is a dyke-like pegmatite about one kilometre long, of albite-type, with manganese-rich tantalite as the main tantalum mineral, together with some manganese-rich columbite and wodginite. At Mount Cassiterite the deposit is formed by a series of pegmatite sheets of albite-spodumene type, and wodginite is the main tantalum mineral (Sweetapple and Collins, 2002). Tantalum from these pegmatites is extracted by open pit mining.

An Archaean pegmatite body also forms the host for the tantalum mineralisation at Tanco, in Manitoba, Canada, owned by Cabot Corporation. It is part of the rare-metal bearing Bernic Lake pegmatite group, which intrudes metavolcanic Archaean rocks. The Tanco pegmatite forms a shallowly dipping sheet, up to about 100 metres thick and 1600 metres along strike, which is exploited in a room-and-pillar underground mine. It is of the complex pegmatite type, and is strongly zoned; tantalum ore minerals are found throughout, though concentrated at higher grade in certain zones. A wide range of tantalum minerals occur (14 in all) and they are generally fine-grained, meaning that processing of Tanco ore is rather difficult (Černý, 1989). Caesium and lithium are also produced from the Tanco pegmatite. In addition, numerous other tantalum-mineralised pegmatites are known from the Superior Niobium–tantalum

Notes:

40. **Peraluminous:** a chemical term used for rocks in which the total molecular (calcium oxide + sodium oxide + potassium oxide) is less than molecular aluminium oxide.

41. **Leucogranitic:** a light-coloured, silica-rich type of granite.

42. **Albitisation:** alteration by fluids to produce the sodium-rich mineral, albite, a type of feldspar.

43. **Kaolinisation:** alteration of rocks to produce kaolin, also known as china clay.

44. **Syn-tectonic:** formed during an episode of tectonic activity and deformation of the Earth’s crust, usually an episode of continental collision.

45. **Archaean:** a unit of geological time between 3800 and 2500 million years ago.

46. **Metavolcanic:** metamorphosed volcanic rocks.
Province of Ontario and Manitoba (Selway et al., 2005). In Brazil, a large (about one kilometre long), zoned, Proterozoic\(^{47}\) pegmatite body of albite-spodumene type is mined for tantalum, niobium and lithium at the Volta Grande mine at Nazareno, in the Minas Gerais district (Lagache and Quemeneur, 1997).

In Mozambique, the Alto Ligonha Pegmatite Province contains numerous mineralised pegmatites which have been mined since 1926, with tantalum mining and exploration currently focused in the zoned Marropino and Morrua pegmatites, owned by Noventa Ltd. These pegmatites are intruded into the Proterozoic rocks of the Nampula Sub-province, and they are considered to be Ordovician\(^{48}\) in age (Graupner et al., 2010). Numerous examples of tantalum-mineralised granites and pegmatites are also found in North Africa, intruded into the Neoproterozoic rocks of the Arabian-Nubian Shield (Küster, 2009). These include the Kenticha pegmatite field in Ethiopia, the Majahayan pegmatites of Somalia, and the Abu Dabbab and Nuweibi granites in Egypt. At Kenticha, the pegmatite field as a whole has an area of approximately 2500 square kilometres, but tantalum mining is focused on the Main Kenticha Pegmatite, a Cambrian-age dyke-like zoned pegmatite of complex-spodumene type which is mined for columbite-tantalite minerals (Küster, 2009). In Egypt, the Abu Dabbab and Nuweibi prospects are currently being developed towards production. These deposits are unusual in that the mineralisation is found in stock-like granite intrusions, rather than in pegmatites. Columbite-tantalite minerals are disseminated throughout these intrusions, and although the granites show significant evidence of later metasomatic alteration, the tantalum minerals are considered to be magmatic in origin (Küster, 2009).

![Deposit type Brief description Typical grades and tonnage Major examples](Table 3 Key characteristics and examples of the major types of niobium and tantalum deposits (grades and tonnages are very variable between deposits and figures given are indicative only).)

\(^{47}\) Proterozoic: a unit of geological time between 2500 and 542 million years ago.

\(^{48}\) Ordovician: a unit of geological time between 488 and 443 million years ago.
Figure 3 Map showing the global distribution of niobium and tantalum mines, deposits and major occurrences.
In Central Africa, a zone of Neoproterozoic-age tantalum-mineralised pegmatites cuts the Mesoproterozoic Kibaran belt which extends through Burundi, Rwanda, Uganda and the Democratic Republic of Congo (Romer and Lehmann, 1995). Columbite-tantalite minerals are mined both from deeply weathered pegmatites and from secondary placer deposits derived from the pegmatites.

Several regions of China have tantalum-mineralised granites and pegmatites. The most well known is the Yichun deposit, which is hosted in a small (less than 10 square kilometres) granitic batholith of Jurassic age. The uppermost part of this batholith is a highly fractionated topaz-lepidolite granite, which contains tantalum mineralisation in the form of disseminated columbite-tantalite, tantalum-rich cassiterite, and minor microlite (Yin et al., 1995). Elsewhere in China, the Altai pegmatites (north-western China) and the Nanping pegmatites (south-eastern China) have been mined for columbite-tantalite in the past. In Malaysia and south-western Thailand, tin is produced from weathered tin-mineralised granites and pegmatites, and from secondary placer deposits. The tin slags are being reprocessed to produce tantalum.

Extraction methods and processing

Extraction

The mining methods employed to extract niobium and tantalum are similar to other metals of comparable occurrence. Factors that dictate the selection of mining methods include: the physical and chemical properties of the ore mineral; the tonnage and grade; and the shape, geometry and depth of the orebody. The most common methods of extraction are surface (or open-pit) and sub-surface (or underground) mining, or a combination of both. Significant amounts of niobium and tantalum are also extracted by artisanal and small scale mining (ASM).

Surface mining

Massive, or steeply-dipping, low-grade near-surface ore bodies are amenable to open-pit mining techniques. Open-pit methods commonly involve removing overburden, digging or blasting the ore, followed by removal of the ore by truck or conveyor belt for stockpiling prior to processing. Open-pit mining may reach depths of several hundred metres but seldom exceeds 100 metres. Heavily weathered ore bodies, such as the Araxá carbonatite deposit in Brazil, are also mined using open-pit methods.

Land-based placer deposits are amenable to strip mining involving scrapers, bulldozers and loaders. Placer deposits can be poorly consolidated, and only require drilling and blasting where materials have become cemented. For example, tin-tantalum placers in Malaysia are mined using simple stripping methods, whilst hard-rock surface operations, such as Wodgina Mine, are mined using drilling and blasting techniques.

Capital and operating costs for open-pit techniques are far less than those for underground operations.

Underground mining

Underground mining methods are usually employed when surface methods are, or become prohibitively expensive, for example if the deposit becomes too deep. Another major factor in the decision to use underground methods is the waste to ore ratio, or strip ratio. Once the ratio becomes large, open-pit mining methods become uneconomic.

Underground operations commonly require extensive mine development including shaft sinking, de-watering, ventilation, geo-technical support and ore handling. Room and pillar is an underground mining technique where mining progresses in a horizontal direction by developing numerous stopes\(^49\), or rooms, leaving pillars of material for roof support. Ore is blasted and then transported by rail, conveyor or dump truck to the processing plant. Room and pillar mining methods were used at the Tanco pegmatite in Manitoba, Canada. The mine is located under Bernic Lake and is accessed via a 60-metre shaft and via a 20-degree decline\(^50\) from the surface (Cabot, 2001).

By-product production

Niobium and tantalum can also be extracted as a by-product of tin smelter waste. Niobium produced in this way accounts for less than two per cent of total global niobium production. However, the percentage is much higher for tantalum at around 14 per cent. Tantalum is extracted from cassiterite\(^51\) placer middlings\(^52\) using shaking tables, and magnetic\(^53\) and electrostatic\(^54\) separation methods. Tin smelter waste typically contains eight to 10 per cent tantalum oxide, although exceptionally this may rise to 30 per cent. Low-grade smelter wastes can be upgraded by electrothermic reduction\(^55\) yielding a synthetic concentrate with up to 50 per cent tantalum and niobium oxides (Roethe, 1989).

\(^{49}\) Stopes: the void created by extracting the ore.

\(^{50}\) Decline: a mine entrance which is neither horizontal nor vertical; often it takes the form of a spiral ramp.

\(^{51}\) Cassiterite: tin oxide ore mineral, SnO\(_2\).

\(^{52}\) middlings: particles of intermediate grade and size.

\(^{53}\) Magnetic separation: the selective sorting of magnetically susceptible ore minerals using magnetic force.

\(^{54}\) Electrostatic separation: the selective sorting of ore minerals using an electric field.

\(^{55}\) Electrothermic reduction: a reduction reaction performed in an electric arc furnace, utilising calcium oxide, iron oxide and carbon as reducing agents.
Niobium–tantalum

ORE TYPE

Pyrochlore e.g. Niobec Mine
- Coarse desliming
- Fine desliming
- Coarse carbonate flotation
- Fine carbonate flotation
- Desliming
- Low intensity magnetic separation
- Diamine collector
- Xanthates
- Hydrochloric Acid
- Pyrochlore flotation
- Sulphide flotation
- Concentrate leaching
- Concentrate (54% Nb₂O₅)

Tantalite e.g. Greenbushes Mine
- Crushing, milling and screening stages
- Coarse and fine gravity separation using shaking tables, jigs and spirals
- Concentrate de-watering using cyclones and filter bed
- Concentrate drying
- High intensity magnetic separation
- Magnetic fraction roasted
- Concentrate (20-30% Ta₂O₅)
- Non-magnetic fraction to tailings
- Antimony and minor sulphides to tailings

Undersize material to tailings

Concentration de-watering using cyclones and filter bed
- Concentrate drying
- Magnetic fraction roasted
- Concentrate (4-6% Ta₂O₅)
- Non-magnetic fraction to tailings
- Antimony and minor sulphides to tailings

Figure 4 Generalised beneficiation flow diagrams, based upon the Niobec and Greenbushes operations.
Processing
After mining the ores are processed to increase their niobium and tantalum contents. Initial concentration is normally undertaken at, or close to, the mine site and involves crushing the ore followed by separation of niobium and tantalum ore from gangue material, using a combination of physical and chemical methods. Although niobium and tantalum are geochemically similar each requires a different processing route.

Ore beneficiation
Niobium ore is first crushed in jaw, cone or impact crushers and milled in rod or ball mills operating in closed circuits with vibrating screens and screw classifiers to liberate niobium mineral particles. The slurry containing niobium and waste rock is further concentrated to around 54 per cent niobium oxide using a number of methods in multiple stages: gravity separation, froth flotation, magnetic and electrostatic separation, and acid leaching may be used, depending on the physical and chemical characteristics of the ore.

At the Niobec operation in Canada niobium ore is screened and classified, after which the resultant slurry is sent for desliming. Carbonate material is removed by two stages of froth flotation, followed by an additional desliming stage. Magnetite is removed from the slurry, by low intensity magnetic separation, and sent to waste. The sought-after pyrochlore is collected from the slurry by froth flotation using diamine collectors. A final stage of froth flotation is used to remove sulphides, such as pyrite. Residual impurities are leached by hydrochloric acid, leaving a final concentrate that contains around 54 per cent niobium oxide (Figure 4) (lamgold, 2009).

Tantalum ores are initially treated in a similar manner to niobium ores; they are crushed, milled and screened to liberate tantalum mineral particles. The slurry containing tantalum and waste material is concentrated to around 30 per cent tantalum oxide using predominantly gravity and magnetic separation techniques, again depending upon the characteristics of the ore.

At the Greenbushes mine in Australia tin-tantalum ores are processed using a circuit of shaking tables, spirals and jigs. The rough concentrate is de-watered and dried producing a tantalum concentrate containing about four to six per cent tantalum oxide. High intensity magnetic separation is used to separate the paramagnetic tantalum grains from the non-magnetic tin-tantalum grains; the paramagnetic fraction is further concentrated to around 30 per cent tantalum oxide by roasting. The non-magnetic fraction is further processed using a combination of froth flotation and roasting to remove sulphides, and smelting to separate tantalum from tin (Figure 4) (Fetherston, 2004).

Conversion to metal
Tantalum and niobium metal can be produced from three different compounds — fluorides, oxides and chlorides (Albrecht, 1989). The tantalum and niobium compounds are reduced to form pure metals and metal powders by two main methods.

A mixed niobium-tantalum concentrate is digested using a mixture of hydrofluoric and sulphuric acids. The niobium-tantalum-bearing acid solution is then treated using liquid-liquid separation methods, involving solvent extraction or ion exchange, to separate niobium from tantalum. Niobium and tantalum can be extracted from the hydrofluoric-sulphuric acid mixture by using organic solvents, such as cyclohexanone, tributyl phosphate (TBP) or methyl isobutyl ketone (MIBK), whilst leaving behind impurities such as iron, manganese, tin and titanium (Figure 5). Ion exchange is used to produce high-purity solutions of niobium and tantalum and is usually performed using an amine extractant in kerosene.

Niobium and tantalum are precipitated as hydroxides from the mixed organic solvent solution by the addition of ammonia (NH₃). The resultant hydroxides are calcined in a furnace to form niobium and tantalum oxides. The process of sintering the oxide products, with carbon, at high temperature is used to produce niobium and tantalum carbides. Niobium oxide is also the starting point for niobium metal production. The addition of potassium fluoride to the mixed organic solvent solution results in the crystallisation of potassium tantalum fluoride (K₂TaF₇), the pre-requisite for tantalum metal production (Figure 5).

54 Gangue: waste material associated with ore minerals.
55 Screw classifiers: a wet gravity separation method in which dense particles are removed from a slurry by a series of rotating rakes (similar to an Archimedes Screw).
56 Gravity separation: the selective sorting of ore minerals by exploiting natural variations in mineral density.
57 Froth flotation: the selective separation of hydrophobic (water-repelling) ore minerals from hydrophilic (water-attracting) ore minerals.
58 Acid leaching: the process of extracting metal from a concentrate using mineral acids.
59 Desliming: the removal of particles in the micron size range prior to processing.
60 Diamine collectors: a positively charged cationic collector used to float rare-metal oxides.
61 Desliming: the removal of particles in the micron size range prior to processing.
62 Acid leaching: the process of extracting metal from a concentrate using mineral acids.
63 Shaking tables, spirals and jigs: water and gravity based separation devices.
64 Paramagnetic: a form of magnetism that only occurs in the presence of an externally applied magnetic field.
65 Calcined: a thermal process applied to ores in order to bring about decomposition, phase transitions or the removal of volatile matter (e.g. carbon dioxide and water).
66 Sintering: a process of forming a coherent bonded mass by heating metal powders without melting.
Two slightly different production routes are available for the production of niobium metal: one is used to produce pure niobium metal and the other is used to produce ferro-niobium. High-purity niobium metal is produced by aluminothermic reduction of high-purity niobium oxide with aluminium, lime and fluorspar. Electron beam melting is commonly used to increase the purity of niobium. To produce ferro-niobium, containing about 60 per cent niobium, iron oxide powder is added to the mixture prior to reduction (Albrecht, 1989).

The reduction of potassium tantalum fluoride by reaction with sodium is the most common method of producing tantalum metal. Potassium tantalum fluoride is blended with liquid sodium and inert salts to form a paste. The paste is then roasted in a continuous furnace to produce tantalum metal powder, potassium fluoride and sodium fluoride. To ensure a high degree of purity, as required by the electronics industry, the conversion process is performed using tantalum vessels under low-oxygen conditions. Further purification is achieved by vacuum arc furnace or electron beam melting of tantalum powder (Albrecht, 1989).

Although niobium and tantalum are extracted and processed conventionally, significant amounts are also extracted by artisanal and small scale mining (ASM).

Artisanal and small scale mining (ASM) is believed to provide a livelihood for over 100 million people worldwide.
and is defined as mining activities that are labour-intensive but capital-, mechanisation- and technology-poor. ASM is characterised by:

- Poor occupational safety
- Poorly qualified and trained personnel
- Inefficiency in extraction and processing
- Low salaries
- Insufficient consideration of environmental issues

Additionally, ASM is often unregulated with many activities falling outside the host countries’ legal framework (Hentschel et al., 2003).

Certain minerals, such as gold, tin, tungsten and columbite-tantalite (coltan) (Figure 6), which are produced in significant quantities by ASM, can sometimes be mined in conditions of armed conflict and human rights violations. The mining of these minerals under such conditions has given rise to the term ‘conflict minerals’. Their illicit mining is often organised by armed groups who use the profits from the sale of the conflict minerals to further their own ends and to finance further fighting.

Coltan is found in significant quantities in parts of central Africa, in particular the Democratic Republic of Congo (DRC). It is estimated that in 2009 over 50 per cent of global tantalum production was from Africa. In the DRC small scale mining of coltan, from either alluvial or pegmatite sources, is labour intensive and unregulated. Consequently it is difficult to accurately calculate the quantity of coltan mined and exported. It is believed that the majority of coltan mined in the DRC ends up in neighbouring countries such as Rwanda, Burundi and Uganda. It is estimated that rebel groups in the DRC made in excess of $1 billion in 2009 through conflict mineral trading (Bunting, 2010).

Illegally traded coltan ore may end up in consumer electronic products throughout the world. Ore from Rwanda, Burundi or Uganda may be shipped to Asia for processing and smelting. Once processed it is impossible to determine the source of the original ore. The processed material may then be shipped to the western world for use in electrical components such as capacitors. Finally these components may be exported to Asia for inclusion in consumer electronic goods such as mobile phones (Figure 7).

Many non-governmental organisations (NGOs) and charities have initiated schemes aimed at alleviating the problems of ASM and conflict mineral trading. In addition some large electronics companies are now refusing to use conflict mineral-bearing components in their products. However, it is likely to prove difficult to completely avoid the use of these components for the reasons explained above. The success of these schemes also relies on the ability of countries like the DRC to monitor exports, control its army and combat rebel forces (Bunting, 2010).

Figure 7 An example of a conflict mineral supply chain. Source: (Enough Project, 2011).
Specifications and Uses

Specifications

Niobium and tantalum are utilised and traded in a variety of forms, the most significant of which are:

Niobium pentoxide (Nb₂O₅) is a colourless, unreactive solid produced in different grades at better than 99 per cent purity. It is generally the starting point for the production of other niobium compounds, such as niobium chloride (NbCl₅), niobium carbide (NbC) and lithium niobate (LiNbO₃).

Niobium carbide (NbC) is a very hard (Mohs hardness 8.5-9) refractory ceramic compound, formed by sintering a mixture of finely-ground niobium powder with an excess of carbon and heating to around 1800°C. Niobium carbide is a heavy, brown-grey metallic powder containing around 87 per cent niobium.

Niobium metal and metal powder is most commonly formed by the aluminothermic reduction of niobium pentoxide with further purification achieved by electron beam melting.

Ferro-niobium (60% Nb) contains about 60-70 per cent niobium and is produced by reducing a mixture of niobium pentoxide, iron oxide and aluminium powder by aluminothermic reaction. Further purification is achieved by electron beam or vacuum arc furnace melting.

Potassium tantalum fluoride (K₂TaF₇) is the precursor to tantalum metal powder and is produced by reacting potassium fluoride with the tantalum-bearing extractant from solvent extraction.

Tantalum pentoxide (Ta₂O₅) is the starting point for other tantalum compounds including tantalum chloride (TaCl₅), tantalum carbide (TaC) and lithium tantalate (LiTaO₃).

Tantalum carbide (TaC) is an extremely hard (Mohs hardness 9-10) refractory ceramic compound, formed by sintering fine-grained tantalum powder with excess carbon in a furnace. The resulting tantalum carbide is a heavy, brown metallic powder containing in excess of 90 per cent tantalum by weight.

Tantalum metal and metal powder is formed by the reduction of potassium tantalum fluoride salts by sodium at around 800°C. Other methods of producing tantalum metal include carbothermic reduction\(^7\) of tantalum pentoxide and electrolysis\(^7\) of potassium tantalum fluoride salts. By double or triple melting, using arc-furnace or electron beam methods, a very high degree of purity can be achieved in the final product.

Lithium-niobate (LiNbO₃) and lithium-tantalate (LiTaO₃) are colourless, crystalline solids with unique optical and piezoelectric properties\(^7\).

Uses

The unique properties of niobium and tantalum make them vital components in a diverse range of products and applications (Table 4 and 5). These properties include:

- superconductivity\(^7\)
- corrosion-resistance
- very high melting temperatures
- shape memory properties\(^7\)
- high coefficient of capacitance\(^7\)
- bio-compatibility\(^7\)

About 89 per cent of global niobium production is used to produce ferro-niobium, used in high strength low alloy steels; the remaining 11 per cent is used in the manufacture of niobium alloys, niobium chemicals and carbides, high-purity ferro-niobium, and other niobium metal products. Between 2004 and 2010 the production of both niobium chemicals and niobium alloys has increased whilst production of niobium metal products and high-purity ferro-niobium has decreased (Figure 8).

In 2010 almost 18 per cent of tantalum production is used to manufacture tantalum chemicals. A further 17 per cent is used in the manufacture of metallurgical grade powders while capacitor-grade powder production is the largest end-use of tantalum at about 24 per cent. Although some sources suggest that capacitor-grade powder may account for about 48 per cent. Tantalum metal products, ingot and carbides make up the remaining 41 per cent of end-uses. Metallurgical grade powders, chemicals, tantalum ingots and metal products all represent growth areas during the period between 2004 and 2010. The production of both carbides and capacitor-grade powders has decreased during the same period of time (Figure 9).

\(^7\) Electrolysis: a method of reducing metals from metallic compounds to obtain the pure metal.

\(^7\) Piezoelectric: the accumulation of electrical charge in a material in response to mechanical strain.

\(^7\) Superconductivity: a zero electrical resistance occurs in some materials at low temperature.

\(^7\) Shape memory properties: the ability of an alloy to ‘remember’ its original cold-formed shape; returning to the pre-deformed shape upon heating.

Co-efficient of capacitance: the ability of a solid to store an electrical charge.

\(^7\) Bio-compatibility: the ability of a prosthesis implanted in the body to exist in harmony with tissue without causing damaging changes.
Steel and other alloys

Niobium and tantalum are both used in the production of alloys. Niobium, in the form of ferro-niobium, is used in the production of high strength low alloy steels (HSLA). The addition of niobium to steel increases strength, reduces grain boundary deformation\(^77\) and reduces weight. HSLA steels are used to manufacture vehicle bodies, ship hulls, railway tracks, and oil and gas pipelines. They also provide cathode protection\(^78\) to large steel structures such as oil platforms. Tantalum is also used in applications where corrosion resistance is required such as chemical processing equipment (Figure 10) and rust-free fastenings. The bio-compatibility of tantalum-alloys with human tissue is utilised in the production of prosthetic joints and medical devices such as pacemakers.

Other metals which are used in alloys with niobium include zirconium, titanium and tin. These alloys are extremely corrosion resistant and are used to manufacture chemical processing equipment and pipelines. Niobium-titanium and niobium-tin alloys can also be used to produce superconducting magnets required for medical imaging equipment, such as magnetic resonance imaging (MRI) scanners. Tantalum-ruthenium alloys are used in a number of military applications because of the shape memory properties. Such alloys can be bent, compressed or deformed but are capable of regaining their shape on heating to 1120°C.

Vacuum grade ferro-niobium\(^79\) and tantalum are important constituents of superalloys\(^80\) used in high-temperature, high-stress applications. Examples of niobium superalloys include Inconel 718\(^8\), which contains about five per cent niobium and C103\(^8\), used in rocket thruster nozzles, which contains about 89 per cent niobium. Tantalum superalloys, Rene N6\(^8\) and CSMX-10\(^8\), used in high-temperature, high-stress applications such as gas turbine blades, typically contain between two and 8.5 per cent tantalum. Many superalloys contain

\(^77\) Grain boundary deformation: the process by which grains may move past each other in response to a change in grain shape.

\(^78\) Cathode protection: a technique for reducing corrosion of a metal surface by making it the cathode of an electrochemical cell.

\(^79\) Vacuum grade ferro-niobium: ferro-niobium produced using high-purity niobium oxide and vacuum arc furnace melting.

\(^80\) Superalloys: are high-performance alloys that have exceptional mechanical strength and creep resistance at temperatures above 700°C, and resistance to oxidation and corrosion.
Niobium–tantalum

appreciable amounts, up to 50 per cent, of nickel, cobalt, or nickel-iron; other elements also used in alloy mixtures include chromium, aluminium, molybdenum, titanium and hafnium.

Carbides

Niobium and tantalum carbides are extremely hard, refractory ceramic substances that are often used in high-stress, high-temperature applications. Tantalum and niobium carbides, in the form of TaNbC\(^{81}\), WTiTaC\(^{82}\) or WTiTaNbC\(^{83}\), may be added to tungsten carbide in the manufacture of industrial high-speed cutting and boring tools, teeth for excavator buckets and drill bits for the mining industry. Carbides are also used as refractory coatings in nuclear reactors and furnaces.

Cemented carbide, also known as hard metal, is a composite of various metal carbides cemented into a compact mass using a cobalt or nickel binder. On account of their very high strength and resistance to corrosion and abrasion, hard metals are also used in high-speed drilling and cutting tools. Such a hard metal composite may contain 73.5 per cent tungsten carbide, 10.5 per cent tantalum carbide, seven per cent titanium carbide, and nine per cent cobalt binder.

Thin coatings of niobium or tantalum carbide may be applied to surfaces using either chemical vapour deposition (CVD), or physical vapour deposition (PVD)\(^{84}\) techniques. Carbide coatings often increase strength and improve wear resistance, increasing the life of tool cutting edges.

Powders

Niobium and tantalum powders are used in a wide range of applications and are often the precursor to a number of products containing these metals, for example, alloys, abrasion- and corrosion-resistant coatings, and structural

```
81 TaNbC: tantalum-niobium-carbide.
82 WTiTaC: tungsten-titanium-tantalum-carbide.
83 WTiTaNbC: tungsten-titanium-tantalum-niobium-carbide.
84 Vapour deposition: a process of thin film deposition used to manufacture high-purity, high-performance solid materials.
```

Table 4 Summary of the main uses of niobium by industry sector. Source: (TANB, 2011a).
ceramics. High-purity tantalum powder is primarily used in the production of capacitors because of its ability to hold an electrical charge. Even though the quantity used in each capacitor is very small this is a very significant application because an average mobile phone contains 23 tantalum capacitors (MBM, 2006) and global production of new mobile phones in 2010 was 417 million. Tantalum powders for capacitor production are made in three forms: angular powders for high-voltage applications; nodular powders for low-voltage, high-capacitance applications; and flake powders for medium-voltage, medium-capacitance uses. Niobium powder is also used to manufacture capacitors but they are commonly larger and have a shorter life span than tantalum-based capacitors.

Chemicals

Niobium and tantalum oxides are commonly used in the production of speciality glass and structural ceramics. Examples include high refractive index glass for camera and eyeglass lenses, niobium- and tantalum-doped ceramics for use in capacitors and high-performance bearings.

Lithium niobate and lithium tantalate are chemical compounds with unique optical, piezoelectric and pyroelectric properties. They are primarily used in the manufacture of electronic components, such as capacitors and surface acoustic wave filters, which are employed in devices such as mobile phones, motion detectors and laser switching devices, used in range finding applications. They are also used in touchscreen technologies.

Niobium nitride is an important component of superconducting magnets, used in MRI scanners. Tantalum nitride is an effective semi-conductor used in numerous electronic applications such as light emitting diodes (LED), solar cells, transistors and digital circuits.

World resources, reserves and production

Resources and reserves

Unlike many other metals global resource and reserve data for niobium and tantalum are not well documented. However, primary reserves and resources of niobium and tantalum are

Table 5 Summary of the main uses of tantalum by industry sector. Source: (TANB, 2011b).
Niobium–tantalum

estimated to be more than sufficient to meet global demand for the foreseeable future, at least the next 500 years.

Niobium resources and reserves

Niobium resources are almost exclusively located in Brazil and Canada. However, other countries with unquantified niobium resources include Egypt, Malawi and Greenland. Global niobium ore reserves, proved and probable, are estimated to be in the region of 485 million tonnes with over 93 per cent occurring in Brazil and the remaining seven per cent occur in Canada (Table 6).

Tantalum resources and reserves

Tantalum ore resources and reserves are located in a greater number of countries than those of niobium and are estimated to be about 317 000 tonnes and almost 153 000 tonnes respectively, according to the Tantalum-Niobium International Study Centre and the National Department of Mineral Production (DNPM–Brazil). Brazil has the largest share of resources at approximately 40 per cent. The remaining 60 per cent occur in Australia, Asia, Russia and the Middle East, Africa, North America and Europe (Table 7).

Production

Niobium production

World production of niobium rapidly increased from approximately 20 000 tonnes in 1997 to over 100 000 tonnes in 2009 (Figure 11). The primary source of niobium is the mineral pyrochlore, accounting for approximately 98 per cent of the total, with only minor production coming from the production of columbite and tin-slags. The increase in niobium production is linked to growing consumption of HSLA, used in the manufacture of cars, buildings, ships and refinery equipment. Demand for these steels is linked

<table>
<thead>
<tr>
<th>Source</th>
<th>Proved and probable reserves (tonnes)</th>
<th>Contained Nb₂O₅ (tonnes)</th>
<th>Inferred resources (tonnes)</th>
<th>Contained Nb₂O₅ (tonnes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>452 200 000</td>
<td>11 142 740</td>
<td>11 900 000</td>
<td>214 200**</td>
</tr>
<tr>
<td>Canada</td>
<td>32 086 000</td>
<td>179 682</td>
<td>37 912 000</td>
<td>219 889</td>
</tr>
<tr>
<td>United States</td>
<td>150 000*</td>
<td>----</td>
<td>37 912 000</td>
<td>219 889</td>
</tr>
<tr>
<td>Total</td>
<td>484 436 000</td>
<td>11 322 422</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

* Deemed uneconomic at 2010 prices (Papp, 2011a)
** Only includes resources from Catalão (AngloAmerican, 2011)

Table 6 Estimated global reserves and resources of niobium ore. (Iamgold, 2009, AngloAmerican, 2011, CBMM, 2011, Papp, 2011a). Total resources are not reported as not all countries are included.

particularly to the recent industrial development of nations such as China and India, and the rapid growth of the global population. For example, in 1997 annual car production was around 53 million vehicles compared with nearly 62 million in 2009 (OICA, 2011).

The increased demand for niobium may also be attributed to its use in mobile telephones, superconducting magnets, (such as used in the Large Hadron Collider), glass and camera lens coatings, superalloys and functional and structural ceramics.

In 1997 Brazil accounted for approximately 88 per cent of world niobium production. This figure has since risen to about 95 per cent. Canada is responsible for the majority of remaining production (Figure 12).

<table>
<thead>
<tr>
<th>Source</th>
<th>Most likely resource base (tonnes Ta₂O₅)</th>
<th>Percentage of resources</th>
<th>Reserves (tonnes Ta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>129 274</td>
<td>40</td>
<td>87 360</td>
</tr>
<tr>
<td>Australia</td>
<td>65 771</td>
<td>21</td>
<td>40 560</td>
</tr>
<tr>
<td>China and Southeast Asia</td>
<td>33 112</td>
<td>10</td>
<td>7 800</td>
</tr>
<tr>
<td>Russia and Middle East</td>
<td>31 298</td>
<td>10</td>
<td>----</td>
</tr>
<tr>
<td>Central Africa</td>
<td>28 576</td>
<td>9</td>
<td>3 120</td>
</tr>
<tr>
<td>Other Africa</td>
<td>21 318</td>
<td>7</td>
<td>12 480</td>
</tr>
<tr>
<td>North America</td>
<td>5443</td>
<td>2</td>
<td>1 500*</td>
</tr>
<tr>
<td>Europe</td>
<td>2268</td>
<td>1</td>
<td>----</td>
</tr>
<tr>
<td>Total</td>
<td>317 060</td>
<td>100</td>
<td>152 820</td>
</tr>
</tbody>
</table>

*Deemed uneconomic at 2010 prices (Papp, 2011b)

Table 7 Estimated global tantalum reserves and resources. (Papp, 2011b, Schwela, 2010a, DNPM, 2009).

Tantalum production

Global tantalum production peaked in 2001 at just over 2000 tonnes; since then it has declined to about 900 tonnes in 2009 (Figure 13). About half of all tantalum production is associated with the primary ore mineral tantalite, while the remainder comes from tin-slag material and other concentrates such as struverite and columbite-tantalite. Demand for tantalum is driven mainly by the electronics industry where it is a vital component in a wide range of consumer products.

The recent decline in tantalum production is related to the temporary closure of both the Wodgina and Greenbushes mines, in Australia. These operations were placed on care and maintenance due to the drop in the price of tantalum, as a result of the economic downturn, and the increased volume of conflict tantalum entering the market from the DRC.

Unlike niobium, production of tantalum is much more widespread although Africa, predominantly Rwanda
and Democratic Republic of Congo, accounted for over 60 per cent of global tantalum production in 2009. In 2002 Australia produced about 60 per cent of global tantalum but this figure dropped to less than ten per cent in 2009 due to the temporary closure of the Wodgina and Greenbushes mines. Additional production comes mostly from Brazil (about 20 per cent in 2009) with minor amounts also produced in Malaysia and Canada (Figure 14).

Projects under development

The growing markets for niobium and tantalum have led to an increase in exploration for niobium and tantalum in recent years. Many of the deposits being investigated contain both metals but, in many cases one is predominant. Current exploration for both metals is focussed on carbonatite, peralkaline granite-hosted and LCT-type granite-hosted deposits (Table 8).

Global Advanced Metals (GAM), formerly Talison Metals, has re-started mining at its Wodgina operation in Australia. Tantalum pentoxide will be produced at Wodgina at a rate of 318 tonnes per year, although at full capacity it could be double that quantity. Material from Wodgina will be processed at Global Advanced Metals’ Greenbushes operation. Mining is not currently taking place at Greenbushes (Schwela, 2010b).

Globe Metals and Mining also plans to bring its Kanyika project in Malawi into full production by 2013. The operation will produce approximately 200 tonnes of ferro-niobium, and 190 tonnes of tantalum pentoxide per year. The operation will also produce by-product uranium oxide and zirconium silicate (Schwela, 2010b).

Australian company, Ram Resources Ltd, has acquired 51 per cent of the Motzfeldt polymetallic deposit in southern Greenland. Motzfeldt has the potential to be a giant niobium-tantalum deposit with possible by-product rare earth elements. The overall resource could be in the region of 500 million tonnes although further work is required to define a JORC compliant estimate (RamResources, 2011).

World trade

It is difficult to obtain trade data specific to niobium and tantalum as they are commonly reported under a combined

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Location</th>
<th>Company</th>
<th>Type</th>
<th>Resources* (Mt)</th>
<th>% Nb₂O₅</th>
<th>% Ta₂O₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anita</td>
<td>Canada</td>
<td>Les Mineraux Crevier</td>
<td>Carbonatite-nepheline syenite</td>
<td>23.75</td>
<td>0.186</td>
<td>0.019</td>
</tr>
<tr>
<td>Motzfeldt</td>
<td>Greenland</td>
<td>Ram Resources</td>
<td>Alkaline-peralkaline granite</td>
<td>500</td>
<td>0.13-0.15</td>
<td>0.011-0.013</td>
</tr>
<tr>
<td>Crevier</td>
<td>Canada</td>
<td>MDN Inc.</td>
<td>Carbonatite-nepheline syenite</td>
<td>25.4</td>
<td>0.2</td>
<td>0.023</td>
</tr>
<tr>
<td>Kanyika</td>
<td>Malawi</td>
<td>Globe Metals and Mining</td>
<td>Alkaline-peralkaline granite</td>
<td>21</td>
<td>0.41</td>
<td>0.018</td>
</tr>
<tr>
<td>Abu Dabbab</td>
<td>Egypt</td>
<td>Gippsland</td>
<td>LCT granite</td>
<td>44.5</td>
<td>n.a.</td>
<td>0.025</td>
</tr>
<tr>
<td>Nuweibi</td>
<td>Egypt</td>
<td>Gippsland</td>
<td>LCT granite</td>
<td>98</td>
<td>0.0095</td>
<td>0.014</td>
</tr>
<tr>
<td>Marropino</td>
<td>Mozambique</td>
<td>Noventa</td>
<td>LCT granite</td>
<td>7.4</td>
<td>n.a.</td>
<td>0.023</td>
</tr>
<tr>
<td>Upper Fir</td>
<td>British Columbia</td>
<td>Commerce Resources Corp.</td>
<td>Carbonatite-nepheline syenite</td>
<td>36.4</td>
<td>0.17</td>
<td>0.019</td>
</tr>
</tbody>
</table>

*Includes all categories of resource

Table 8 Selected niobium-tantalum projects under development. (Schwela, 2010b, Gippsland, 2011, RamResources, 2011).
trade code with vanadium and rhenium. This uncertainty is compounded by the fact that niobium and tantalum are traded in a variety of forms including metallurgical products, ores and concentrates, and chemicals.

Due to concerns over future access to niobium and tantalum ores, and because for many applications effective substitutes are not available, the European Commission (EC) has identified niobium and tantalum as ‘critical’ raw materials (EC, 2010). This means that the EC considers there to be a potential risk of supply shortage with an associated impact on the EU economy. Strategies are being considered to mitigate against these supply risks. These include the promotion of sustainable development practices, improved resource efficiency and increased recycling.

The EU does not currently produce any niobium or tantalum and consequently it is entirely dependent on imports from other countries.

Brazil is the world’s largest exporter of niobium, in the form of ferro-niobium, niobium oxide and niobium metal. Canada is the second largest exporter of niobium. Significant importers of these materials include Germany, the United States, Japan and China.

In 2009, Brazil supplied the United States with about 69 per cent of its ferro-niobium, 91 per cent of its niobium metal and 86 per cent of its niobium oxide. Mozambique (48 per cent) and Canada (32 per cent) were the main suppliers of niobium ores and concentrates to the United States (Figure 15). Comparable data for other major importing countries is not available.

South America (Brazil) and Central Africa have recently overtaken Australia as exporters of tantalum, although this is likely to change with the re-opening of Wodgina and Greenbushes mines. A number of countries currently trade tantalum manufacturing and processing waste including Germany, Japan and China. The majority of tantalum exports are in the form of tantalum oxide or as the potassium salt. Currently the main exporters of tantalum ores, scrap, and tin slags to the EU include Japan, China and Kazakhstan.

In 2009, Australia supplied the United States with about 66 per cent of its tantalum concentrate whilst Canada supplied a further 21 per cent. The main exporters of tantalum metal to the United States were China (27 per cent), Kazakhstan (27 per cent) and Germany (15 per cent); tantalum scrap imports into the United States came from China (15 per cent), Germany (12 per cent) and Portugal (14 per cent) (Figure 16).

Prices

Unlike many other metals niobium and tantalum are not openly traded on any metal exchange; contract prices are negotiated between buyer and seller and generally remain confidential. Trade journals sometimes report indicative prices based on interviews with buyers and sellers.

Prior to 2007 ferro-niobium prices lay in the range US$12 to 14 per kilogram. However, as of February 2011, prices were reported to be about US$39 to 41 per kilogram, possibly due to increased demand (RamResources, 2011, Burns, 2009).

Tantalum is traded in three forms, each commanding a different price: in February 2011 tantalum ore and concentrates was about US$120 per pound; tantalum oxides and salts about US$240 per pound; and capacitor-grade tantalum powder in excess of US$300 per pound (Reisman, 2011).
Recycling and substitution

Recycling
Both niobium and tantalum can be recovered from waste metals and scrap and in both cases account for up to 20 per cent of total supply (EC, 2010). Niobium is primarily recovered from niobium-steels and superalloys, but the amount recovered from other sources is minor. Tantalum is recovered from a number of different items including cemented carbides and alloys; however, recycling from capacitors is difficult and current technology is poorly developed. Other items from which tantalum can be recovered include spent sputtering targets, and edge trimmings and shavings from metallurgical processes.

Substitution
Many of the uses of niobium and tantalum are very specific and substitutes often incur a cost or performance penalty. Due to the physical and chemical similarities of niobium and tantalum the two metals can be substituted for each other in a number of applications, for example, in corrosion-resistant coatings. Where strength at high temperature is required in steel, metals such as molybdenum and vanadium are often used as substitutes for niobium and tantalum. Efforts are currently being made to substitute tantalum by aluminium or ceramics (Table 9 and 10). Some applications are unique and as such suitable substitutes are currently not available, for example, porous tantalum alloys used in the manufacture of prosthetic body parts.

<table>
<thead>
<tr>
<th>Niobium product/application</th>
<th>Possible substitutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSLA steels</td>
<td>Molybdenum and vanadium</td>
</tr>
<tr>
<td>Stainless and high-strength steels</td>
<td>Tantalum and titanium</td>
</tr>
<tr>
<td>High-temperature applications</td>
<td>Ceramics, molybdenum, tantalum and tungsten</td>
</tr>
</tbody>
</table>

Table 9 Potential niobium substitutes. (Papp, 2011a).

<table>
<thead>
<tr>
<th>Tantalum product/application</th>
<th>Possible substitutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitor manufacture</td>
<td>Aluminium and ceramics</td>
</tr>
<tr>
<td>Carbide material production</td>
<td>Niobium</td>
</tr>
<tr>
<td>Corrosion-resistant equipment</td>
<td>Glass, niobium, platinum, titanium and zirconium</td>
</tr>
<tr>
<td>High-temperature applications</td>
<td>Hafnium, iridium, molybdenum, niobium, and tungsten</td>
</tr>
</tbody>
</table>

Table 10 Potential tantalum substitutes. (Papp, 2011b).

Focus on Britain

Niobium and tantalum have never been commercially exploited anywhere in Britain, and there has been no systematic evaluation of niobium and tantalum resources. Locations of potential interest are confined to alkaline and associated igneous rocks which are relatively rare in the UK.

Carbonatites and associated rocks
The only confirmed carbonatite body in the UK is associated with the Silurian alkaline Loch Borralan Complex in the north-west Highlands of Scotland. The whole of the Loch Borralan Complex (including the carbonatite and associated ultramafic rocks) has generally low bulk-rock niobium contents, and niobium-bearing minerals such as pyrochlore are not present (Young et al., 1994).

Carbonate veins and evidence of sodium metasomatism (fenitisation) have been found at several localities along the Great Glen Fault near Inverness, and have been attributed to carbonatitic magmatism. Bulk-rock analyses indicate that niobium contents in the carbonate and fenite veins are higher than in the surrounding country rocks, but niobium-bearing minerals such as pyrochlore have not been found (Garson et al., 1984). These veins are of relatively limited extent, but it is possible that a larger carbonatite mass may exist at depth.

Alkaline to peralkaline granites and syenites
Alkaline igneous rocks in the British Isles were formed during three main magmatic episodes: the Caledonian magmatism (Silurian to Devonian), the Permo-Carboniferous, and the Palaeogene.

Caledonian igneous rocks are widespread, but the vast majority are calc-alkaline in composition. A suite of alkaline, largely syenitic, plutons occurs in the north-west Highlands of Scotland, but all these intrusions are characterised by low bulk-rock niobium contents (Fowler et al., 2008). Niobium- and tantalum-bearing minerals have not been recognised in these syenites. In Wales, Ordovician to Silurian alkaline microgranites with relatively high bulk-rock niobium contents (up to 150 ppm) occur both in Snowdonia and the Llŷn Peninsula. The Mynydd Mawr microgranite in Snowdonia has been reported to contain niobium and tantalum minerals (Bevins and Mason, 2010, Young et al., 2002).

89 Silurian: a unit of geological time between 443 and 416 million years ago.
90 Permo-carboniferous: a unit of geological time around 300 million years ago that represents the end of the Carboniferous and the start of the Permian.
91 Palaeogene: a unit of geological time between 65 and 23 million years ago.

88 Sputtering target: metallic materials used as targets for the deposition of thin-films of tantalum compounds (e.g. tantalum carbide).
Alkaline magmatism was extensive in central to southern Scotland and northern England during the Carboniferous and Permian periods, but the majority of the exposed igneous rocks are mafic volcanic rocks. More highly evolved magmatic rocks form a set of small plugs and laccoliths concentrated in central Scotland, which are typically trachytic in composition. These trachytic igneous masses have relatively high bulk-rock niobium contents, up to 180 ppm (Upton et al., 2007), but there are no records of niobium-bearing minerals being concentrated through either magmatic or hydrothermal processes.

The British Palaeogene igneous province extends along the western side of Britain, from the Bristol Channel to St Kilda and into Northern Ireland. The majority of these rocks are tholeiitic to alkali basaltic in composition, but some more evolved rocks are present, chiefly as granitic plutons. Trace element data for these granites generally indicate low to moderate bulk-rock niobium contents (< 50 ppm). Fergu- sonite, a niobium- and tantalum- bearing oxide, has been reported from the northern Arran granite, where it occurs in miorolitic cavities (Hyslop et al., 1999). Columbite has been reported from the Lundy Granite (Thorpe et al., 1995).

Granites and pegmatites of the LCT family

A number of large Palaeoproterozoic granitic pegmatites occur on the island of South Harris, in the Outer Hebrides. These have typical LCT mineral assemblages, including muscovite, biotite, beryl and rare tourmaline. The Chaipaval pegmatite, which has previously been quarried for alkali feldspar, also contains columbite and pyrochlore (von-Knorring and Dearnley, 1960). Pegmatites of this age occur across much of the Archaean Lewesian Gneiss Complex of north-western Scotland, but niobium and tantalum minerals have not been recorded elsewhere in this area.

LCT-type mineralisation is rare in granitoids of Caledonian age. At Carrock Fell in the Lake District, tungsten-bearing mineral veins occur within the Skiddaw Granite; columbite has also been described from these veins (Young, 1987). In the Cairngorm Granite in Scotland, fergussonite, columbite, ilmenorutile and cassiterite have been found in stream-sediment samples, but the source of these minerals has not been investigated in detail (IGS, 1975).

The Variscan (Permian) granites of south-west England are classic LCT granites, well-known for their tin and tungsten mineralisation. The surface outcrops are connected at depth to form the Cornubian Batholith, which is roughly 200 kilometres in length and includes biotite granites, tourmaline granites and topaz granites, and associated pegmatites. The main tin and tungsten mineralisation occurs as hydrothermally altered veins within the upper parts of the granites and their country rocks, and in late stage pegmatites and apilites. Columbite-tantalite and microlite have been recorded from the Meldon Aplite microgranite dyke, which intrudes Carboniferous country rocks on the north-western side of Dartmoor (von-Knorring and Condiffe, 1984). The relationship of this dyke to nearby granites is uncertain. Columbite-tantalite has also been found in pegmatites and topaz granites associated with the St Austell Granite, at Gunheath, Goonvean and Rostowrak clay pits (Symes, 2010, Scott et al., 1998).

References

Footnotes

92 Carboniferous: a unit of geological time between 359 and 299 million years ago.

93 Plug: a small, cylindrical, body of igneous rock, emplaced beneath the Earth’s surface.

94 Laccolith: a body of igneous rock, emplaced beneath the Earth’s surface, which is circular in plan, with a flat floor and a shallow domed roof.

95 Trachytic: a fine-grained type of igneous rock containing abundant amounts of a mineral called alkali feldspar; the fine-grained equivalent of syenite.

96 Tholeiitic: a certain suite of igneous rocks with distinct chemistry typically formed in the oceans or at continental margins.

97 Miarolitic: a term for crystal-lined cavities commonly found in granites and granitic pegmatites.

98 Batholith: a very large mass of igneous rock, tens of hundreds of kilometres across.

Niobium–tantalum

This commodity profile was produced by the British Geological Survey (2011).

It was compiled by Richard Shaw and Kathryn Goodenough with the assistance of Gus Gunn, Teresa Brown and Debbie Rayner.

This report is one of a series of Commodity Profiles available to download free-of-charge from www.MineralsUK.com.

For further information please contact:

British Geological Survey, Keyworth, Nottingham, NG12 5GG, United Kingdom

Tel: +44 (0)115 936 3100
Fax: +44 (0)115 936 3446
E-mail: minerals@bgs.ac.uk
Website: www.MineralsUK.com

Unless otherwise stated, copyright of materials contained in this report are vested in NERC. BGS © NERC 2011. All rights reserved.