X-ray Microtomography of Intermittency in Multiphase Flow at Steady State Using a Differential Imaging Method

Dataset description

The images in this dataset are a sample of Bentheimer Sandstone from a micro-computed tomography (micro-CT) scan acquired with a voxel resolution of 6.00µm. We imaged the steady state flow of brine and decane in Bentheimer sandstone. We devised an experimental method based on differential imaging to examine how flow rate impacts the pore-scale distribution of fluids during coinjection. This allows us to elucidate flow regimes (connected, or breakup of the nonwetting phase pathways) for a range of fractional flows at two capillary numbers, Ca, namely 3.0E-7 and 7.5E-6. At the lower Ca, for a fixed fractional flow, the two phases appear to flow in connected unchanging subnetworks of the pore space, consistent with conventional theory. At the higher Ca, we observed that a significant fraction of the pore space contained sometimes oil and sometimes brine during the 1 h scan: this intermittent occupancy, which was interpreted as regions of the pore space that contained both fluid phases for some time, is necessary to explain the flow and dynamic connectivity of the oil phase; pathways of always oil-filled portions of the void space did not span the core. This phase was segmented from the differential image between the 30 wt % KI brine image and the scans taken at each fractional flow. Using the grey scale histogram distribution of the raw images, the oil proportion in the intermittent phase was calculated. The pressure drops at each fractional flow at low and high flow rates were measured by high precision differential pressure sensors. The relative permeabilities and fractional flow obtained by our experiment at the mm-scale compare well with data from the literature on cm-scale samples.

Constraints

We gratefully acknowledge permission to publish and funding from the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), provided jointly by Qatar Petroleum, Shell, and Qatar Science & Technology Park. Qatar Petroleum remain copyright owners

Further information

For more information please contact:

Enquiries

Environmental Science Centre, Nicker Hill, Keyworth
Nottingham
NG12 5GG

Tel : +44 (0)115 936 3143
Fax :+44 (0)115 936 3276
Email :enquiries@bgs.ac.uk

Associated dataset(s)

Qatar Carbonates and Carbon Storage Research Centre (QCCSRC)

Dataset details

Author(s) qccsrc@imperial.ac.uk , Martin Blunt
Principal Investigator(s) Martin Blunt
Imperial College London
Language English
Curator British Geological Survey
Supply media/format .TXM; Version:NA
Storage format Not available
Frequency of update not applicable
Start of capture {ts '2017-01-21 00:00:00'} Not known
End of capture {ts '2017-02-08 00:00:00'} 8th February 2017
Online access URL various
Lineage statement Rock Samples were obtained from the Bad Benthenium, Germany. These were scanned using a Zeiss Xradia VersaXRM-500 Micro-CT scanner at an actual voxel (pixel) size of 6.00um. The output images are in a proprietary TXRM dataset format and include the metadata relating to the image acquisition scanner settings e.g. voxel size. The details of the sample preparation and fluid injection strategy can be found in Gao et al. (2017). The Fluid configurations during steady state brine/decane fractional flow coinjection for a range of fractional flows at two capillary numbers, Ca, namely 3.0E-7 and 7.5E-6. The image size was 1004x1024x1016 voxels. After reconstruction, all the images were resampled using the Lanczos algorithm (Burger & Burge, 2016). The TXRM files were then processed using Zeiss?s XMReconstructor software to give a stack of image slices in another proprietary TXM format.
Supplementary information Gao et al (2017) X-ray micro-tomography of intermittency in multiphase flow at steady state using a differential imaging method. Water Resources Research. DOI:10.1002/2017WR021736
Constraints
Access constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Use constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Additional info on constraints We gratefully acknowledge permission to publish and funding from the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), provided jointly by Qatar Petroleum, Shell, and Qatar Science & Technology Park. Qatar Petroleum remain copyright owners
Contact details
Department Enquiries
Organisation British Geological Survey
Address Environmental Science Centre, Nicker Hill, Keyworth
City Nottingham
County Nottinghamshire
Country United Kingdom
Postcode NG12 5GG
E-mail enquiries@bgs.ac.uk
Telephone +44 (0)115 936 3143
Fax +44 (0)115 936 3276
Keywords
Topic category code (ISO) geoscientificInformation (information pertaining to earth sciences)
Keywords POROSITY
CARBON CAPTURE AND STORAGE
Keyword source BGS Keyphrases
Spatial details
Spatial Reference System Not available
Dataset extent
Coverage (Lat/Long) North boundary : 
East boundary  : 
South boundary : 
West boundary  : 
Metadata
Metadata language English
Metadata last updated 18th October 2018
Metadata standard compliance NERC profile of ISO19115:2003
Copyright and IPR
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.