
Modelling of crater formation
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The scenario
In 2018, scientists will be landing a seismometer on Mars and expect to start 
detecting signals from meteorite impacts early in 2019. Satellite images from 
Mars can be used to identify new impact craters; if we can locate these new 
craters are and work out how much energy it took to create them, scientists 
will be able use the seismic signals to discover more about the Martian 
interior. 

For this exercise, you are working in one of the project teams for this 
mission. Each team has been tasked to investigate high velocity meteorite 
impacts on the surface of Mars.

Your group have decided to simulate impact craters using low-velocity 
experiments. Your group has been told that the surface of Mars is very 
powdery like flour.

A homework could be to research the mathematical modelling 
of crater formation.

Crater activity: mathematical modelling of 
impactors
The impactors

For any of the investigations you will need to collect together spherical 
objects of different diameters. The smallest ball doesn’t want to have a 
diameter much less than 1 cm (a marble); anything much smaller and the 
object tends to burrow rather than produce a crater.

The best impactor has been found to be a wooden ball (the density is a key 
factor) of radius around 1.75 cm and mass 30 g.

The landing area

Prepare the impactor landing area. This could be a deep baking try or a 
cardboard box — something with high sides works well to prevent ejecta 
escaping. The landing area should be at least 30 cm by 30 cm. The landing 
material is a key factor to consider; flour or fine sand are both possibilities. 

Flour has been found to be the best material. Very small glass beads model 
real impact surfaces well. The surface can also be given a spray from an 
indoor plant sprayer/mister; the surface forms a realistic crust. 

• understand the role impactors 
have in crater formation

• understand the importance of 
controlling variables in producing 
reliable data

• describe the energy transfers as 
an object falls and impacts

• use the correct equations to 
calculate impact velocities

• use data to accurately plot line 
graphs

• analyse data and graphs 
to report on patterns and 
relationships

• building a mathematical model

• evaluate data and experimental 
procedure and comment on 
reliability

• deep baking tray or cardboard 
box (at least 30 x 30 cm)

• flour (enough to fill the above 
container to a depth of 5 cm)

• cocoa powder (for a thin ejecta 
‘blanket’ layer)

• wooden ball (impactor c.1.75 
radius; 30g)

Learning objectives

Equipment needed
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5



The landing is prepared by slowly pouring the flour (or sand) into the container; the flour 
does not want to be too compressed so a sieve should be used if possible. Shift the 
container from side to side to evenly distribute the flour. The flour should be to a depth of 
at least 5 cm.

You can investigate the patterns of impact craters in greater detail by 
tracking the ejecta by using a fine powder that’s a different colour to 
the flour; for example cocoa powder, custard powder or powdered 
paint. Some of the coloured powder is sieved onto the surface of the 
flour when preparing the impact area; this will allow the ejecta and 
rays thrown up from the impact event to be seen and measured.

Procedure

Present your students with a collection of different spherical objects. An introductory investigation will allow them to 
select which object they consider to be the ‘best’ impactor.

Select just one of the objects; the same object will used as an impactor throughout the investigation.

The best impactor has been found to be a wooden ball (the density is a key factor) of radius around 1.75 cm and mass 
30 g.

The impactor will be dropped from various heights, which simulates different impact speeds (assuming the impactor 
doesn’t reach terminal velocity). 

An element of experimental design can be introduced: get the students to plan their own heights. A range from 
20 cm up to 200 cm with a 20 cm interval works well.

There is a critical height above which your students will obtain ‘good’ craters. You might want to leave this for your 
students to find out for themselves or you could tell them. However, they will need to drop their impactors above 
this height if they are looking for quantative data. For the wooden ball and flour the critical height was experimentally 
found to be 0.72 m. 

An explanation for this phenomenon could be that at a lower drop height there is a point where the force of impact 
is not strong enough to overcome the particle-particle interaction of the flour granules, and as a result the crater 
diameter is not made significantly wider with increasing height.
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The impact surface is prepared in the same way as the first introductory investigation. The experiment follows the 
procedures as before: drop the impactor into the container from each of the selected heights, repeat and carefully 
measure the distance across the centre of each depression in the flour.

Record the height measurements in a data table like the one below.

Height Diameter of Craters/cm Average Crater Diameter /cm

Example data table.

Analysis and conclusions — mathematical modelling

This investigation develops the idea of impactors and crater formation to use energy changes involving potential and 
kinetic energies to build up two mathematical models. Half of the class could investigate one of the models and then 
evaluate against the other model.

Two mathematical modelling approaches are presented.

Digging a hole

One approach to modelling of the crater experiments is to consider the formation of a crater as being similar to 
digging a hole (Byfleet, 2007; Florida State University).

A crater is modelled as a cubic hole, with sides of dimension L, dug into the sand.

Energy considerations would suggest that the energy required in digging this hole will be the same as the gain in 
potential energy in lifting a similar sized cube of material onto the ground next to the hole.

 

The volume of the hole, V = L3

Mass of material moved from hole, M = volume x density = L3 x 

Weight of this material, W = M x g = L3 x  x g

Gain in potential energy, Ep = W x L

More MarsQuake classroom activities: www.bgs.ac.uk/marsquake



It is suggested that this analysis will be true for any shape of crater; we will just introduce a shaping factor to expand 
to any shape of crater. This shaping factor will be the same for all collisions within an investigation as long as the 
shape of crater is consistent throughout the investigation. 

A hypothesis could be that at higher velocities there could be more tunnelling or perhaps greater compaction and so 
different shapes. The consistency of the sand (e.g. wetness, size of grain) could also be a variable that would affect 
the shaping factor.

So, Ep = W x L = L3 x  x g x L = L4 x  x g x fc where fc is the crater shaping factor

The potential energy for digging the hole will come from the kinetic energy of the ball just before impact and the 
kinetic energy of the ball will equal the loss in potential energy of the ball during its fall (assuming no losses due to air 
resistance).

Kinetic energy of ball just before impact, Ek = loss of potential energy of falling ball = m x g x h

In our model we are assuming no energy losses, so all the kinetic energy of the falling ball just before collision will be 
converted into the potential energy gained by moving the material during the hole digging.

m x g x h = L4 x  x g x fc

So, h  L4 or m  L4

Theory therefore predicts that a graph of height of ball drop or mass of ball against (size of crater)4 should yield a 
straight line since  and the craters’ shape are all constant.

Power law

Another approach is to consider that experimental investigations have shown there is a power law relationship 
between the kinetic energy of the impactor E (=½mv2) and the resulting crater diameter D (Bunce, 2006; Leicester 
University).

Crater theory suggests that:

D = kEn where k and n are (non-integer) constants

Taking natural logs of the above equation gives:

ln(D) = nln(E) + ln(k)

So a graph of ln(D) (along the y-axis) against ln(E) (along the x-axis) graph will produce a linear relationship with n as 
the gradient of the graph, and k as the intercept.
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