High-resolution synchrotron X-ray micro-tomography datasets of multiphase fluid flow in carbonate rocks at reservoir pressure conditions

Dataset description

The datasets contain 416 time-resolved synchrotron X-ray micro-tomographic images (grey-scale and segmented) of multiphase (brine-oil) fluid flow in a carbonate rock sample at reservoir conditions. The tomographic images were acquired at a voxel-resolution of 3.28 m and time-resolution of 38 s. The data were collected at beamline I13 of Diamond Light Source, U.K., with an aim of investigating pore-scale processes during immiscible fluid displacement under a capillary-controlled flow regime, which lead to the trapping of a non-wetting fluid in a permeable rock. Understanding the pore-scale dynamics is important in many natural and industrial processes such as water infiltration in soils, oil recovery from reservoir rocks, geo-sequestration of supercritical CO2 to address global warming, and subsurface non-aqueous phase liquid contaminant transport. Further details of the sample preparation and fluid injection strategy can be found in Singh et al. (2017). These time-resolved tomographic images can be used for validating various pore-scale displacement models such as direct simulations, pore-network and neural network models, as well as to investigate flow mechanisms related to the displacement and trapping of the non-wetting phase in the pore space.

Constraints

Imperial College London gratefully acknowledge permission to publish and funding from the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), provided jointly by Qatar Petroleum, Shell, and Qatar Science & Technology Park. Qatar Petroleum remain copyright owner.

Further information

For more information please contact:

Enquiries

Environmental Science Centre, Nicker Hill, Keyworth
Nottingham
NG12 5GG

Tel : +44 (0)115 936 3143
Fax :+44 (0)115 936 3276
Email :enquiries@bgs.ac.uk

Associated dataset(s)

Qatar Carbonates and Carbon Storage Research Centre (QCCSRC)

Dataset details

Author(s) qccsrc@imperial.ac.uk
Principal Investigator(s) Not available
Language English
Curator British Geological Survey
Supply media/format .raw; Version:NA
Storage format Not available
Frequency of update not applicable
Start of capture {ts '2015-09-09 00:00:00'} Not known
End of capture {ts '2015-09-15 00:00:00'} 15th September 2015
Online access URL  
Lineage statement The details of the sample preparation and fluid injection strategy can be found in Singh et al. (2017). The rock sample was imaged with synchrotron X-ray micro-tomography at the Diamond Light Source (UK), on the Diamond-Manchester Imaging Branchline (I13-2), using a pink beam with photon energies up to 30 keV. The low energy X-rays were filtered by placing a set of 0.2 mm pyrolitic carbon, 2.2 mm aluminum, and 0.1 mm gold filters in the beam, which controlled the heating of the sample due to the absorption of low energy X-rays by the sample. The X-rays were converted to visible light by using a 250 ?m thick CdWO4 scintillator; these photons were then recorded by a PCO Edge camera. Tomographic images with a size of 20003 voxels were acquired at a voxel size of 1.64 ?m, which were then binned (2?~2?~2) to obtain images of 10003 voxels with a voxel size of 3.28 ?m. A total of 3000 projections with an exposure time of 0.06 s were acquired over 180?? rotation for scanning the dry rock sample before starting the flow experiment. For dynamic imaging during imbibition, we collected 800 projections with an exposure time of 0.02 s for each tomographic image. Total acquisition time for each dynamic tomographic image was 24 s (16 s for acquisition and 8 s for triggering). The real time-step between each image was 38 s (which included 14 s for repositioning the rotation stage and transferring the data to a storage disk). The images were acquired in .tiff format. These were then processed using Avizo software and converted to .raw format. The greyscale images are in 16 bit unsigned .raw, and binary (segmented) images are in 8 bit unsinged .raw format.
Supplementary information Singh, K., Menke, H., Andrew, M., Lin, Q., Rau, C., Blunt, M.J. and Bijeljic, B. (2017) Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media. Scientific Reports 7(1), 5192
Constraints
Access constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Use constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Additional info on constraints Imperial College London gratefully acknowledge permission to publish and funding from the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC), provided jointly by Qatar Petroleum, Shell, and Qatar Science & Technology Park. Qatar Petroleum remain copyright owner.
Contact details
Department Enquiries
Organisation British Geological Survey
Address Environmental Science Centre, Nicker Hill, Keyworth
City Nottingham
County Nottinghamshire
Country United Kingdom
Postcode NG12 5GG
E-mail enquiries@bgs.ac.uk
Telephone +44 (0)115 936 3143
Fax +44 (0)115 936 3276
Keywords
Topic category code (ISO) geoscientificInformation (information pertaining to earth sciences)
Keywords TOMOGRAPHY
CARBON CAPTURE AND STORAGE
Keyword source BGS Keyphrases
Spatial details
Spatial Reference System Not available
Dataset extent
Coverage (Lat/Long) North boundary : 
East boundary  : 
South boundary : 
West boundary  : 
Metadata
Metadata language English
Metadata last updated 13th December 2017
Metadata standard compliance NERC profile of ISO19115:2003
Copyright and IPR
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.