Solubility of Indium-Tin Oxide in simulated lung and gastric fluids: Pathways for human assimilation NERC grant NE/L001896/1

Dataset description

From being a metal with very limited natural distribution,indium (In) has recently become disseminated throughout the human society. Little is know of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably testicular cancer. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive fluids, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree, simulated by Gamble's solution) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to at dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung and the high solubility of ITO in artificial lysosomal fluids, the environment of the deep lungs is likely to provide the major route for assimilation of In and Sn from inhaled ITO nano- and microparticles. Digestion is likely to also lead to assimilation through dissolution in the stomach and interaction with digestive enzymes in the pancreatic juice. However, this route is less likely to lead to substantial assimilation because of the much shorter residence times of particles in the digestive system.


The data and manuscript are confidential, as of August 2016 for a period of 2 years, until a publication agreement has been reached.

Further information

For more information please contact:


Environmental Science Centre, Nicker Hill, Keyworth
NG12 5GG

Tel : +44 (0)115 936 3143
Fax :+44 (0)115 936 3276


Dataset details

Author(s) Not available
Principal Investigator(s) Not available
Language English
Curator British Geological Survey
Supply media/format Not available
Storage format Not available
Frequency of update not applicable
Start of capture {ts '2013-09-01 00:00:00'} After September 2013
End of capture {ts '2014-08-01 00:00:00'} Before August 2014
Contact details
Department Enquiries
Organisation British Geological Survey
Address Environmental Science Centre, Nicker Hill, Keyworth
City Nottingham
County Nottinghamshire
Country United Kingdom
Postcode NG12 5GG
Telephone +44 (0)115 936 3143
Fax +44 (0)115 936 3276
Topic category code (ISO) geoscientificInformation (information pertaining to earth sciences)
Keywords INDIUM
Keyword source BGS Keyphrases
Spatial details
Spatial Reference System Not available
Dataset extent
Coverage (Lat/Long) North boundary : 
East boundary  : 
South boundary : 
West boundary  : 
Metadata language English
Metadata last updated 2nd November 2016
Metadata standard compliance NERC profile of ISO19115:2003
Copyright and IPR
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.