UKCCSRC Call 2 Project: Investigating the radiative heat flux in small and large scale oxy-coal furnaces for CFD model development and system scale up

Dataset description

Oxy-fuel combustion has been recognised as one of the very competitive technologies for CO2 capture in the power generation sector. Its importance for CCS technology development in the UK is evident from the Government's recent decision to fund the FEED study on White Rose Partnership project. Traditionally furnace design replies on experience based design plots and some modelling analysis. High concentration of CO2 in oxy-fuel combustion leads to a substantial change in the radiation property of the furnace and therefore CFD modelling is becoming a critical predictive and design tool. The main aims of this project are to collect a comprehensive and much needed set of data for radiation model development by measuring experimentally the combustion and heat transfer properties, including direct radiative heat flux measurements and other combustion processes, in the state-of-the-art 250kW PACT oxy-combustion test facilities and the 35MW large scale oxy-combustion plant at HUST in China. The data will then be used to develop further and validate the next generation Full-Spectrum Correlated k distributions (FSCK) model that is currently under development at Leeds. The developed and validated CFD models may then be employed with more confidence to predict, analyse and optimise the operation of future full scale CCS plant for system scale up. Grant number: UKCCSRC-C2-193.

Further information

For more information please contact:

Enquiries

Environmental Science Centre, Nicker Hill, Keyworth
Nottingham
NG12 5GG

Tel : +44 (0)115 936 3143
Fax :+44 (0)115 936 3276
Email :enquiries@bgs.ac.uk

Associated dataset(s)

UKCCSRC Call 2 project poster: Investigating radiative heat flux in small and large scale oxy-coal furnaces for CFD model development, Cardiff Biannual 10.09.14

UKCCSRC Call 2 project poster: Investigating radiative heat flux in small and large scale oxy-coal furnaces for CFD model development, Cranfield Biannual 21.04.15

UKCCSRC Call 2 project poster: Investigating the radiative heat flux in small & large scale oxy-coal furnaces for CFD model development, CSLF Call project poster reception, London, 27.06.16

Dataset details

Author(s) Lin Ma
Principal Investigator(s) Lin Ma
University of Leeds
Language English
Curator British Geological Survey
Supply media/format Not available
Storage format Not available
Frequency of update not applicable
Start of capture {ts '2014-09-01 00:00:00'} Not known
End of capture {ts '2016-02-01 00:00:00'} Before February 2016
Online access URL  
Lineage statement UKCCSRC Call 2 project, grant number: UKCCSRC-C2-193, Lead institution: University of Sheffield
Supplementary information
Constraints
Access constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Use constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Additional info on constraints
Contact details
Department Enquiries
Organisation British Geological Survey
Address Environmental Science Centre, Nicker Hill, Keyworth
City Nottingham
County Nottinghamshire
Country United Kingdom
Postcode NG12 5GG
E-mail enquiries@bgs.ac.uk
Telephone +44 (0)115 936 3143
Fax +44 (0)115 936 3276
Keywords
Topic category code (ISO) geoscientificInformation (information pertaining to earth sciences)
Keywords CARBON CAPTURE AND STORAGE
Keyword source BGS Keyphrases
Spatial details
Spatial Reference System Not available
Dataset extent
Coverage (Lat/Long) North boundary : 
East boundary  : 
South boundary : 
West boundary  : 
Metadata
Metadata language English
Metadata last updated 23rd June 2016
Metadata standard compliance NERC profile of ISO19115:2003
Copyright and IPR
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.