UKCCSRC Call 2 Project: Measurement of water solubility limits of CO2 mixtures to underpin the safe pipeline transportation of CO2

Dataset description

This Proposal focuses on the determination of the dew point of water (H2O), or ?water solubility?, in impure CO2 mixtures (e.g. containing nitrogen, N2, oxygen, O2, hydrogen, H2, or mixtures of N2 + H2). The proposed work is a direct result of new findings in our project under Call 1, where we have obtained highly reproducible data for water solubility in CO2 + N2 using infrared spectroscopy and are well on the way to implementing an independent route using the so-called ?Karl-Fischer? titration technique to give independent validation of our results. We have shown that the solubility of H2O is significantly reduced by the presence of even low concentrations of N2, a finding which has direct implications on anthropogenic CO2 transportation pipeline specifications and operation (e.g. internal corrosion). Such data have been identified by the Advanced Power Generation Technology Forum (APGTF) and the priorities specified in the UKCCRC Research And Pathways to Impact Delivery (RAPID) Handbook as being crucial for developing safe CO2 transportation in both the gaseous and dense phase. This Project has been designed to fill gaps in the available data, which are crucial for the safe implementation of Carbon Capture and Storage (CCS) because liquid water is highly acidic in the presence of excess CO2; this acidity can be increased by trace amounts of sulphur dioxide (SO2) and hydrogen sulphide (H2S), and this acidity will greatly accelerate corrosion in transportation pipelines and can cause further problems in sub-surface storage. Keeping water and CO2 in a single phase during transportation will largely avoid these problems. In Call 1, we set out to design and develop two complementary experimental approaches using either Infrared spectroscopy or Karl-Fischer titration. The key is now to understand the major implications for the complex range of CCS mixtures. A further complication is that the phase behaviour is highly dependent on both composition and temperature, therefore in order to fully understand the behaviour of water in the context of CCS requires further measurements. For this project we are targeting the needs outlined by National Grid in their letter for pre-combustion CCS where H2 is a likely contaminant. We have obtained preliminary data for H2 which shows that the effects may be greater than for N2, but this needs full validation. Furthermore, we propose to test the widespread assumption that the behaviour of O2 impurities will mirror that of N2. O2 is important in CCS coupled to the oxyfuel technology. Grant number: UKCCSRC-C2-185.

Further information

For more information please contact:

Enquiries

Environmental Science Centre, Nicker Hill, Keyworth
Nottingham
NG12 5GG

Tel : +44 (0)115 936 3143
Fax :+44 (0)115 936 3276
Email :enquiries@bgs.ac.uk

Associated dataset(s)

UKCCSRC Call 1/2 paper: Understanding the solubility of water in carbon capture and storage mixtures: An FTIR spectroscopic study of H2O+CO2+N2 ternary mixtures

UKCCSRC Call 2 project paper: A synthetic-dynamic method for water solubility measurements in high pressure CO2 using ATR?FTIR spectroscopy

UKCCSRC Call 2 project poster: Measurement of Water Solubility Limits of CO2 Mixtures to Underpin the Safe Pipeline Transportation of CO2, CSLF Call project poster reception, London, 27.06.16

UKCCSRC Call 2 project poster: Measurement of water solubility limits of CO2 mixtures to underpin safe pipeline transportation of CO2, Cardiff Biannual 10.09.14

UKCCSRC Call 2 project poster: Measurement of water solubility limits of CO2 mixtures to underpin safe pipeline transportation of CO2, Cranfield Biannual 21.04.15

Dataset details

Author(s) Mike George
Principal Investigator(s) Mike George
University of Nottingham
Language English
Curator British Geological Survey
Supply media/format Not available
Storage format Not available
Frequency of update not applicable
Start of capture {ts '2014-09-01 00:00:00'} Not known
End of capture {ts '2016-02-01 00:00:00'} Before February 2016
Online access URL  
Lineage statement UKCCSRC Call 2 project, grant number: UKCCSRC-C2-185, Lead institution: University of Nottingham
Supplementary information
Constraints
Access constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Use constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Additional info on constraints
Contact details
Department Enquiries
Organisation British Geological Survey
Address Environmental Science Centre, Nicker Hill, Keyworth
City Nottingham
County Nottinghamshire
Country United Kingdom
Postcode NG12 5GG
E-mail enquiries@bgs.ac.uk
Telephone +44 (0)115 936 3143
Fax +44 (0)115 936 3276
Keywords
Topic category code (ISO) geoscientificInformation (information pertaining to earth sciences)
Keywords CARBON CAPTURE AND STORAGE
Keyword source BGS Keyphrases
Spatial details
Spatial Reference System Not available
Dataset extent
Coverage (Lat/Long) North boundary : 
East boundary  : 
South boundary : 
West boundary  : 
Metadata
Metadata language English
Metadata last updated 23rd June 2016
Metadata standard compliance NERC profile of ISO19115:2003
Copyright and IPR
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.