QICS Paper: Passive acoustic quantification of gas fluxes during controlled gas release experiments

Dataset description

The detection and quantification of an underwater gas release are becoming increasingly important for oceanographic and industrial applications. Whilst the detection of each individual bubble injection events, with commensurate sizing from the natural frequency of the acoustic emission, has been common for decades in laboratory applications, it is impractical to do this when hundreds of bubbles are released simultaneously, as can occur with large methane seeps, or leaks from gas pipelines or undersea facilities for carbon capture and storage. This paper draws on data from two experimental studies and demonstrates the usefulness of passive acoustics to monitor gas leaks of this level. It firstly shows experimental validation tests of a recent model aimed at inverting the acoustic emissions of gas releases in a water tank. Different gas flow rates for two different nozzle types are estimated using this acoustic inversion and compared to measurements from a mass flow meter. The estimates are found to predict accurately volumes of released gas. Secondly, this paper demonstrates the use of this method at sea in the framework of the QICS project (controlled release of CO2 gas). The results in the form of gas flow rate estimates from bubbles are presented. These track, with good agreement, the injected gas and correlate within an order of magnitude with diver measurements. Data also suggest correlation with tidal effects with a decrease of 15.1 kg d−1 gas flow for every 1 m increase in tidal height (equivalent to 5.9 L/min when converted to standard ambient temperature [25 °C] and absolute pressure [100 kPa] conditions, SATP). This is a publication in QICS Special Issue - International Journal of Greenhouse Gas Control, Peter Taylor et. al. Doi:10.1016/j.ijggc.2015.02.008.

Further information

For more information please contact:

Enquiries

Environmental Science Centre, Nicker Hill, Keyworth
Nottingham
NG12 5GG

Tel : +44 (0)115 936 3143
Fax :+44 (0)115 936 3276
Email :enquiries@bgs.ac.uk

Associated dataset(s)

NERC Project: QICS - Quantifying and monitoring environmental impacts of geological carbon storage (2010 - 2014)

Dataset details

Author(s) Benoît J.P. Bergès
Principal Investigator(s) Benoît J.P. Bergès
University of Southampton
Language English
Curator British Geological Survey
Supply media/format Not available
Storage format Not available
Frequency of update not applicable
Start of capture {ts '2010-05-01 00:00:00'} Not known
End of capture {ts '2014-10-16 00:00:00'} Before 16th October 2014
Online access URL http://www.sciencedirect.com/science/article/pii/S175058361500050X
Lineage statement See the journal publication for details
Supplementary information
Constraints
Access constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Use constraints intellectualPropertyRights (rights to financial benefit from and control of distribution of non-tangible property that is a result of creativity)
Additional info on constraints
Contact details
Department Enquiries
Organisation British Geological Survey
Address Environmental Science Centre, Nicker Hill, Keyworth
City Nottingham
County Nottinghamshire
Country United Kingdom
Postcode NG12 5GG
E-mail enquiries@bgs.ac.uk
Telephone +44 (0)115 936 3143
Fax +44 (0)115 936 3276
Keywords
Topic category code (ISO) geoscientificInformation (information pertaining to earth sciences)
Keywords CARBON CAPTURE AND STORAGE
Keyword source BGS Keyphrases
Spatial details
Spatial Reference System Not available
Dataset extent
Coverage (Lat/Long) North boundary : 
East boundary  : 
South boundary : 
West boundary  : 
Metadata
Metadata language English
Metadata last updated 14th December 2016
Metadata standard compliance NERC profile of ISO19115:2003
Copyright and IPR
The copyright of materials derived from the British Geological Survey's work is vested in the Natural Environment Research Council [NERC]. No part of this work may be reproduced or transmitted in any form or by any means, or stored in a retrieval system of any nature, without the prior permission of the copyright holder, via the BGS Intellectual Property Rights Manager. Use by customers of information provided by the BGS, is at the customer's own risk. In view of the disparate sources of information at BGS's disposal, including such material donated to BGS, that BGS accepts in good faith as being accurate, the Natural Environment Research Council (NERC) gives no warranty, expressed or implied, as to the quality or accuracy of the information supplied, or to the information's suitability for any use. NERC/BGS accepts no liability whatever in respect of loss, damage, injury or other occurence however caused.